不同边界层稳定性下海气湍流热通量日变化的前沿问题探讨
徐常三(1984—), 男, 山东省寿光市人, 硕士, 研究方向是物理海洋和海气相互作用。email: |
Copy editor: 林强
收稿日期: 2020-11-11
要求修回日期: 2021-01-12
网络出版日期: 2021-01-26
基金资助
国家自然科学基金项目(42076016)
版权
On the mechanisms behind diurnal variations in air-sea turbulent heat fluxes under different boundary layer stability
Copy editor: LIN Qiang
Received date: 2020-11-11
Request revised date: 2021-01-12
Online published: 2021-01-26
Supported by
National Natural Science Foundation of China(42076016)
Copyright
海气湍流热通量(潜热和感热)是研究海气相互作用和大洋环流的关键要素, 认识其变化机理对理解“海洋动力过程及气候效应”有重要意义。然而, 受观测手段和计算能力两方面的限制, 过去对海气湍流热通量日变化研究存在“特征认识较粗、机制理解较疏”的现象。本文探讨了在不同边界层稳定性下海气湍流热通量日变化研究中的问题与难点, 并讨论了“不同边界层稳定性下海气湍流热通量日变化过程和机理”这一关键科学问题。本文提出, 可基于海洋浮标、平台和波浪滑翔机等综合观测数据和高时空分辨率再分析资料, 利用块体算法和脉动分离方法, 揭示全球海气湍流热通量的精细化日变化特征和决定因素, 以及海气湍流热通量日变化强度(日内小时级变化的标准差)与极端天气过程和气候事件的动力关联。同时, 为更精准认识日变化过程, 在技术上可通过耦合高频海表流速和校正边界层物理参数观测高度等方式提升海气湍流热通量估算的精确度。本文提出可将多时空尺度海气湍流热通量变化维度转换到边界层稳定性上, 以便集中认识其日变化特征和机理, 支撑全球海气能量平衡的科学认识。
徐常三 , 宋翔洲 , 齐义泉 . 不同边界层稳定性下海气湍流热通量日变化的前沿问题探讨[J]. 热带海洋学报, 2021 , 40(3) : 57 -68 . DOI: 10.11978/YG2020005
The air-sea turbulent heat fluxes (THFs), including the evaporative latent heat flux and convective sensible heat flux, are key components in air-sea interaction and ocean circulation, which are important for our understanding of the global energy balance, water cycle and climate change. Due to the limitations of observations and numerical simulations, the diurnal variations in THFs are however not accurately known. In this paper, we propose a future research plan toward identifying the mechanisms behind diurnal variations in THFs. With the recent development of traditional buoy observations, new observations (e.g., glider) and newly released atmospheric reanalysis, it is helpful to research the diurnal variations in THFs. Using the combined observations and reanalysis, we investigate the key scientific issues on diurnal variations in THFs under different boundary layer stability based on the bulk formulas and turbulence methods. In the future, we will demonstrate the global basic structures and dominant factors for diurnal variations in THFs, as well as the strength of the diurnal variation associated with the extreme weather processes and climate events. To evaluate accurate magnitudes of THFs for better understanding of diurnal variations, high-frequency surface currents and height-dependent air-sea physical variables will be incorporated into the estimates of THFs in terms of bulk formulas. Innovatively, this study transfers the multi-scale THF variations into the space of boundary layer stability to concentrate on the diurnal variations, which help study the mixed-layer dynamics, upper-ocean ecosystems, energy balance, and climate change.
图1 Price等(1986)利用船载连续观测证实海气热通量(a)、温度剖面(b)和温度序列(c)的日变化特征, 并基于此观测开发并验证了混合层变化模型(PWP模型)Fig. 1 Diurnal variations in air-sea fluxes (a), temperature profiles (b) and time series of layered temperature (c) confirmed by continuous shipboard observations in Price et al (1986). They developed and validated the mixed-layer model (PWP model) based on these observations |
图2 热通量日变化对风海流影响模拟实验之一(Ide et al, 2016)颜色表示日内不同时刻的风海流, 纵、横坐标均为无因次流速, 其中U*为归一化速度单位, 蓝圈表示在冬季观测到的风海流范围 Fig. 2 A simulation experiment concerning the influences of heat fluxes on wind-driven currents (Ide et al, 2016). The color indicates the wind-driven currents at different times of the day, and the vertical and horizontal coordinates represent the dimensionless velocities, respectively. U* is unit of normalized speed. Blue circle denotes approximate range of speed factor and deflection angle for winter. |
图3 考虑日变化后夏季东亚季风模拟中的物理量变化(Hong et al, 2012)a. 降水; b. 温度; c. 感热; d. 潜热 Fig. 3 Changes in the summer east asian monsoon simulation (Hong et al, 2012), precipitation (a), temperature (b), sensible heat (c), and latent heat (d) considering the diurnal variation |
图4 黑潮延伸体区浮标观测的冬季潜热日变化异常值示意图(Clayson et al, 2019)右图为浮标位置和2007年12月平均潜热通量 Fig. 4 Diurnal variation in latent heat in winter observed by buoys in the Kuroshio Extension (Clayson et al, 2019). Buoy locations and average LHF for December 2007 are shown in the right panel |
图5 基于2016年自然资源部浮标(38º12′N, 121º06′E)观测的海气湍热通量日变化(Song, 2020)a、b分别表示7月潜热和感热日变化; c、d则表示11月日变化情况 Fig. 5 Daily variations in air-sea turbulent heat fluxes observed by the operational buoys of the Ministry of Natural Resources (38º12′N, 121º06′E) in 2016 (Song, 2020). (a) and (b) denote the diurnal variations in latent and sensible heat in June; (c) and (d) denote the diurnal variations in November |
图6 基于观测的表面净热通量(a)、风应力(b)和海温结构(c、d)日变化过程及对上层湍流日变化的响应(Moulin et al, 2018)Fig. 6 Daily variations in net heat flux (a), wind stress (b) and SST structure (c and d) based on the observations and their responses to the diurnal variation in upper turbulence (Moulin et al, 2018) |
图7 考虑与不考虑海温日变化情形下所得的全球潜热两月(bimonthly)平均结果之差(Weihs et al, 2014)Fig. 7 Difference between bimonthly average results of global latent heat with and without daily variation of sea surface temperature (Weihs et al, 2014) |
图8 湍热通量的主要观测载体a. 自然资源部浮标; b. 自然资源部海上观测平台; c. 中国海洋大学“黑珍珠”波浪滑翔器(孙秀军 等, 2019); d. 法国OCARINA滑翔机(Bourras et al, 2019) Fig. 8 Turbulent heat flux observations including buoys of MNR (a), offshore observation platform of MNR (b), Black Pearl wave glider of Ocean University of China (c; Sun et al, 2019), and OCARINA glider recently developed by French scientists (d; Bourras et al, 2019) |
图9 已完成质量控制的典型海区浮标位置(a)和观测时间(b)示意图浮标A为美国大洋观测计划(Ocean Observation Initiative, OOI)南大洋浮标(紫色), 浮标B—G以及I为三大洋热带浮标观测阵列, 浮标H(黑色)为自然资源部热带季风观测浮标, 浮标L和M为我国近海浮标和平台观测, 浮标J和K为美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration, NOAA)湾流区通量观测浮标 Fig. 9 A schematic diagram of buoy locations (a) and observation times (b) in global oceans. A is the OOI Southern Ocean buoy (purple). B-G and I are global tropical buoy observation arrays. H is the tropical monsoon observation buoy of the MNR (black). L and M are offshore buoys and platforms in China. J and K are USA NOAA flux observation buoys. |
[1] |
陈大可, 雷小途, 王伟, 等, 2013. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 28(10):1077-1086.
|
[2] |
盛裴轩, 毛节泰, 李建国, 等, 2013. 大气物理学[M]. 2版. 北京: 北京大学出版社.
|
[3] |
孙秀军, 王雷, 桑宏强, 2019. “黑珍珠”波浪滑翔器南海台风观测应用[J]. 水下无人系统学报, 27(5):562-569.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
/
〈 | 〉 |