热带海洋学报 ›› 2021, Vol. 40 ›› Issue (3): 57-68.doi: 10.11978/YG2020005CSTR: 32234.14.YG2020005
收稿日期:
2020-11-11
修回日期:
2021-01-12
出版日期:
2021-05-10
发布日期:
2021-01-26
通讯作者:
宋翔洲
作者简介:
徐常三(1984—), 男, 山东省寿光市人, 硕士, 研究方向是物理海洋和海气相互作用。email: 基金资助:
XU Changsan1,2(), SONG Xiangzhou2(
), QI Yiquan2
Received:
2020-11-11
Revised:
2021-01-12
Online:
2021-05-10
Published:
2021-01-26
Contact:
SONG Xiangzhou
Supported by:
摘要:
海气湍流热通量(潜热和感热)是研究海气相互作用和大洋环流的关键要素, 认识其变化机理对理解“海洋动力过程及气候效应”有重要意义。然而, 受观测手段和计算能力两方面的限制, 过去对海气湍流热通量日变化研究存在“特征认识较粗、机制理解较疏”的现象。本文探讨了在不同边界层稳定性下海气湍流热通量日变化研究中的问题与难点, 并讨论了“不同边界层稳定性下海气湍流热通量日变化过程和机理”这一关键科学问题。本文提出, 可基于海洋浮标、平台和波浪滑翔机等综合观测数据和高时空分辨率再分析资料, 利用块体算法和脉动分离方法, 揭示全球海气湍流热通量的精细化日变化特征和决定因素, 以及海气湍流热通量日变化强度(日内小时级变化的标准差)与极端天气过程和气候事件的动力关联。同时, 为更精准认识日变化过程, 在技术上可通过耦合高频海表流速和校正边界层物理参数观测高度等方式提升海气湍流热通量估算的精确度。本文提出可将多时空尺度海气湍流热通量变化维度转换到边界层稳定性上, 以便集中认识其日变化特征和机理, 支撑全球海气能量平衡的科学认识。
中图分类号:
徐常三, 宋翔洲, 齐义泉. 不同边界层稳定性下海气湍流热通量日变化的前沿问题探讨[J]. 热带海洋学报, 2021, 40(3): 57-68.
XU Changsan, SONG Xiangzhou, QI Yiquan. On the mechanisms behind diurnal variations in air-sea turbulent heat fluxes under different boundary layer stability[J]. Journal of Tropical Oceanography, 2021, 40(3): 57-68.
[1] | 陈大可, 雷小途, 王伟, 等, 2013. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 28(10):1077-1086. |
CHEN DAKE, LEI XIAOTU, WANG WEI, et al, 2013. Upper ocean response and feedback mechanisms to typhoon[J]. Advances in Earth Science, 28(10):1077-1086 (in Chinese with English abstract). | |
[2] | 盛裴轩, 毛节泰, 李建国, 等, 2013. 大气物理学[M]. 2版. 北京: 北京大学出版社. |
[3] | 孙秀军, 王雷, 桑宏强, 2019. “黑珍珠”波浪滑翔器南海台风观测应用[J]. 水下无人系统学报, 27(5):562-569. |
SUN XIUJUN, WANG LEI, SANG HONGQIANG, 2019. Application of wave glider “Black Pearl” to typhoon observation in South China Sea[J]. Journal of Unmanned Undersea Systems, 27(5):562-569 (in Chinese with English abstract). | |
[4] | ALLEN M R, INGRAM W J, 2002. Constraints on future changes in climate and the hydrologic cycle[J]. Nature, 419(6903):228-232. |
[5] |
ANDREAS E L, 2004. Spray stress revisited[J]. Journal of Physical Oceanography, 34(6):1429-1440.
doi: 10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2 |
[6] |
BERRY D I, KENT E C, 2009. A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates[J]. Bulletin of the American Meteorological Society, 90(5):645-656.
doi: 10.1175/2008BAMS2639.1 |
[7] |
BOER G J, 1993. Climate change and the regulation of the surface moisture and energy budgets[J]. Climate Dynamics, 8(5):225-239.
doi: 10.1007/BF00198617 |
[8] |
BOURRAS D, CAMBRA R, MARIÉ L, et al, 2019. Air-sea turbulent fluxes from a wave-following platform during six experiments at sea[J]. Journal of Geophysical Research: Oceans, 124(6):4290-4321.
doi: 10.1029/2018JC014803 |
[9] |
CAYAN D R, 1992. Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature[J]. Journal of Physical Oceanography, 22(8):859-881.
doi: 10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2 |
[10] |
CLAYSON C A, EDSON J B, 2019. Diurnal surface flux variability over western boundary currents[J]. Geophysical Research Letters, 46(15):9174-9182.
doi: 10.1029/2019GL082826 |
[11] |
CRONIN M F, GENTEMANN C L, EDSON J, et al, 2019. Air-sea fluxes with a focus on heat and momentum[J]. Frontiers in Marine Science, 6:430.
doi: 10.3389/fmars.2019.00430 |
[12] |
DEMOTT C A, KLINGAMAN N P, WOOLNOUGH S J, 2015. Atmosphere-ocean coupled processes in the Madden-Julian oscillation[J]. Reviews of Geophysics, 53(4):1099-1154.
doi: 10.1002/rog.v53.4 |
[13] |
DONG SHENFU, GILLE S T, SPRINTALL J, 2007. An assessment of the southern ocean mixed layer heat budget[J]. Journal of Climate, 20(17):4425-4442.
doi: 10.1175/JCLI4259.1 |
[14] |
EDSON J B, JAMPANA V, WELLER R A, et al, 2013. On the exchange of momentum over the open ocean[J]. Journal of Physical Oceanography, 43(8):1589-1610.
doi: 10.1175/JPO-D-12-0173.1 |
[15] |
EMANUEL K A, 1987. An air-sea interaction model of intraseasonal oscillations in the tropics[J]. Journal of the Atmospheric Sciences, 44(16):2324-2340.
doi: 10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2 |
[16] | FAIRALL C W, BRADLEY E F, ROGERS D P, et al, 1996. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment[J]. Journal of Geophysical Research: Oceans, 101(C2):3747-3764. |
[17] | FENG MING, DUAN YONGLIANG, WIJFFELS S, et al, 2020. Tracking air-sea exchange and upper-ocean variability in the Indonesian-Australian Basin during the onset of the 2018/19 Australian summer monsoon[J]. Bulletin of the American Meteorological Society, 101(8):1397-1412 |
[18] |
GELARO R, MCCARTY W, SUÁREZ M J, et al, 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. Journal of Climate, 30(14):5419-5454.
doi: 10.1175/JCLI-D-16-0758.1 |
[19] |
GIGLIO D, GILLE S T, SUBRAMANIAN A C, et al, 2017. The role of wind gusts in upper ocean diurnal variability[J]. Journal of Geophysical Research: Oceans, 122(9):7751-7764.
doi: 10.1002/2017JC012794 |
[20] |
GROSSMAN R L, BETTS A K, 1990. Air-sea interaction during an extreme cold air outbreak from the eastern coast of the United States[J]. Monthly Weather Review, 118(2):324-342.
doi: 10.1175/1520-0493(1990)118<0324:AIDAEC>2.0.CO;2 |
[21] |
HELD I M, SODEN B J, 2006. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 19(21):5686-5699.
doi: 10.1175/JCLI3990.1 |
[22] | HERSBACH H, BELL W, BERRISFORD P, et al, 2019. Global reanalysis: goodbye ERA-Interim, hello ERA5[EB/OL]. ECMWF Newsletter, 159:17-24. |
[23] |
HONG SONGYOU, KANAMITSU M, KIM J E, et al, 2012. Effects of diurnal cycle on a simulated Asian summer monsoon[J]. Journal of Climate, 25(24):8394-8408.
doi: 10.1175/JCLI-D-12-00069.1 |
[24] |
HUGHES K G, MOUM J N, SHROYER E L, 2020. Evolution of the velocity structure in the diurnal warm layer[J]. Journal of Physical Oceanography, 50(3):615-631.
doi: 10.1175/JPO-D-19-0207.1 |
[25] |
IDE Y, YOSHIKAWA Y, 2016. Effects of diurnal cycle of surface heat flux on wind-driven flow[J]. Journal of Oceanography, 72(2):263-280.
doi: 10.1007/s10872-015-0328-y |
[26] | KESSLER W S, WIJFFELS S E, CRAVATTE S, et al, 2019. Second Report of TPOS 2020[R]. GOOS-234. |
[27] |
LARGE W G, CARON J M, 2015. Diurnal cycling of sea surface temperature, salinity, and current in the CESM coupled climate model[J]. Journal of Geophysical Research: Oceans, 120(5):3711-3729.
doi: 10.1002/2014JC010691 |
[28] |
LI QING, FOX-KEMPER B, 2017. Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer[J]. Journal of Physical Oceanography, 47(12):2863-2886.
doi: 10.1175/JPO-D-17-0085.1 |
[29] |
LIU W T, KATSAROS K B, BUSINGER J A, 1979. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface[J]. Journal of the Atmospheric Sciences, 36(9):1722-1735.
doi: 10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2 |
[30] |
LUO JINGJIA, MASSON S, ROECKNER E, et al, 2005. Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics[J]. Journal of Climate, 18(13):2344-2360.
doi: 10.1175/JCLI3404.1 |
[31] |
MATSUNO T, 1966. Quasi-geostrophic motions in the equatorial area[J]. Journal of the Meteorological Society of Japan. Ser. II, 44(1):25-43.
doi: 10.2151/jmsj1965.44.1_25 |
[32] | MONIN A S, OBUKHOV A M, 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere[J]. Contrib Geophys Inst Acad USSR, 24(151):163-187. |
[33] |
MOULIN A J, MOUM J N, SHROYER E L, 2018. Evolution of turbulence in the diurnal warm layer[J]. Journal of Physical Oceanography, 48(2):383-396.
doi: 10.1175/JPO-D-17-0170.1 |
[34] |
PACANOWSKI R C, 1987. Effect of equatorial currents on surface stress[J]. Journal of Physical Oceanography, 17(6):833-838.
doi: 10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2 |
[35] |
PEDLOSKY J, ROBBINS P, 1991. The role of finite mixed-layer thickness in the structure of the ventilated thermocline[J]. Journal of Physical Oceanography, 21(7):1018-1031.
doi: 10.1175/1520-0485(1991)021<1018:TROFML>2.0.CO;2 |
[36] |
PLAGGE A M, VANDEMARK D, CHAPRON B, 2012. Examining the impact of surface currents on satellite scatterometer and altimeter ocean winds[J]. Journal of Atmospheric and Oceanic Technology, 29(12):1776-1793.
doi: 10.1175/JTECH-D-12-00017.1 |
[37] | PRICE J F, WELLER R A, PINKEL R, 1986. Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing[J]. Journal of Geophysical Research: Oceans, 91(C7):8411-8427. |
[38] |
RENFREW I A, MOORE G W K, 1999. An extreme cold-air outbreak over the Labrador Sea: Roll vortices and air-sea interaction[J]. Monthly Weather Review, 127(10):2379-2394.
doi: 10.1175/1520-0493(1999)127<2379:AECAOO>2.0.CO;2 |
[39] |
REYNOLDS R W, SMITH T M, LIU CHUNYING, et al, 2007. Daily high-resolution-blended analyses for sea surface temperature[J]. Journal of Climate, 20(22):5473-5496.
doi: 10.1175/2007JCLI1824.1 |
[40] |
RILEY DELLARIPA E M, MALONEY E D, 2015. Analysis of MJO wind-flux feedbacks in the Indian Ocean using RAMA buoy observations[J]. Journal of the Meteorological Society of Japan. Ser. II, 93A:1-20.
doi: 10.2151/jmsj.2015-021 |
[41] | SCHUDLICH R R, PRICE J F, 1992. Diurnal cycles of current, temperature, and turbulent dissipation in a model of the equatorial upper ocean[J]. Journal of Geophysical Research: Oceans, 97(C4):5409-5422. |
[42] |
SEO H, SUBRAMANIAN A C, MILLER A J, et al, 2014. Coupled impacts of the diurnal cycle of sea surface temperature on the Madden-Julian Oscillation[J]. Journal of Climate, 27(22):8422-8443.
doi: 10.1175/JCLI-D-14-00141.1 |
[43] |
SHI RUI, ZENG LILI, CHEN JU, et al, 2015. Observation and numerical simulation of the marine meteorology elements and air-sea fluxes at Yongxing Island in September 2013[J]. Aquatic Ecosystem Health and Management, 18(4):394-402.
doi: 10.1080/14634988.2015.1108822 |
[44] |
SONG JINBAO, FAN WEI, LI SHUANG, et al, 2015. Impact of surface waves on the steady near-surface wind profiles over the ocean[J]. Boundary-Layer Meteorology, 155(1):111-127.
doi: 10.1007/s10546-014-9983-6 |
[45] |
SONG XIANGZHOU, 2020. The importance of relative wind speed in estimating air-sea turbulent heat fluxes in bulk formulas: examples in the Bohai Sea[J]. Journal of Atmospheric and Oceanic Technology, 37(4):589-603.
doi: 10.1175/JTECH-D-19-0091.1 |
[46] | SONG XIANGZHOU, CHEN ZHI, WANG HUA, et al, 2018. China’s vision towards the Tropical Pacific Observing System (TPOS) 2020[J]. CLIVAR Exchanges, No. 75:6-12. |
[47] | SONG XIANGZHOU, NING CHUNLIN, DUAN YONGLIANG, et al, 2021. Observed extreme air-sea heat flux variations during three tropical cyclones in the tropical southeastern Indian Ocean[J/OL]. Journal of Climate [2020-11-11]. https://journals.ametsoc.org/downloadpdf/journals/clim/aop/JCLI-D-20-0170.1/JCLI-D-20-0170.1.pdf |
[48] |
SONG XIANGZHOU, YU LISAN, 2012. High-latitude contribution to global variability of air-sea sensible heat flux[J]. Journal of Climate, 25(10):3515-3531.
doi: 10.1175/JCLI-D-11-00028.1 |
[49] |
SPALL M A, 1992. Cooling spirals and recirculation in the subtropical gyre[J]. Journal of Physical Oceanography, 22(5):564-571.
doi: 10.1175/1520-0485(1992)022<0564:CSARIT>2.0.CO;2 |
[50] |
STOMMEL H, SCHOTT F, 1977. The beta spiral and the determination of the absolute velocity field from hydrographic station data[J]. Deep Sea Research, 24(3):325-329.
doi: 10.1016/0146-6291(77)93000-4 |
[51] |
VÅGE K, PICKART R S, THIERRY V, et al, 2009. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007-2008[J]. Nature Geoscience, 2(1):67-72.
doi: 10.1038/ngeo382 |
[52] |
VANDEMARK D, EDSON J B, CHARPRON B, 1997. Altimeter estimation of sea surface wind stress for light to moderate winds[J]. Journal of Atmospheric and Oceanic Technology, 14(3):716-722.
doi: 10.1175/1520-0426(1997)014<0716:AEOSSW>2.0.CO;2 |
[53] |
WANG XIN, ZHANG RONGWANG, HUANG JIAN, et al, 2017. Biases of five latent heat flux products and their impacts on mixed-layer temperature estimates in the South China Sea[J]. Journal of Geophysical Research: Oceans, 122(6):5088-5104.
doi: 10.1002/jgrc.v122.6 |
[54] |
WEIHS R R, BOURASSA M A, 2014. Modeled diurnally varying sea surface temperatures and their influence on surface heat fluxes[J]. Journal of Geophysical Research: Oceans, 119(7):4101-4123.
doi: 10.1002/2013JC009489 |
[55] |
WELLER R A, FARRAR J T, BUCKLEY J, et al, 2016. Air-sea interaction in the Bay of Bengal[J]. Oceanography, 29(2):28-37.
doi: 10.5670/oceanog |
[56] |
WU LIN, CHENG XUELING, ZENG QINGCUN, et al, 2017. On the upward flux of sea-spray spume droplets in high wind conditions[J]. Journal of Geophysical Research: Atmospheres, 122(11):5976-5987.
doi: 10.1002/jgrd.v122.11 |
[57] |
XUE HUIJIE, BANE J M, GOODMAN L M, 1995. Modification of the Gulf Stream through strong air-sea interactions in winter: Observations and numerical simulations[J]. Journal of Physical Oceanography, 25(4):533-557.
doi: 10.1175/1520-0485(1995)025<0533:MOTGST>2.0.CO;2 |
[58] |
YU LISAN, 2007. Global variations in oceanic evaporation (1958-2005): The role of the changing wind speed[J]. Journal of Climate, 20(21):5376-5390.
doi: 10.1175/2007JCLI1714.1 |
[59] |
YU LISAN, 2019. Global air-sea fluxes of heat, fresh water, and momentum: energy budget closure and unanswered questions[J]. Annual Review of Marine Science, 11(1):227-248.
doi: 10.1146/annurev-marine-010816-060704 |
[60] |
YU LISAN, WELLER R A, 2007. Objectively Analyzed air-sea heat Fluxes for the global ice-free oceans (1981-2005)[J]. Bulletin of the American Meteorological Society, 88(4):527-539.
doi: 10.1175/BAMS-88-4-527 |
[61] |
YU YANG, CHEN SHUHUA, TSENG Y H, et al, 2020. Importance of diurnal forcing on the summer salinity variability in the East China Sea[J]. Journal of Physical Oceanography, 50(3):633-653.
doi: 10.1175/JPO-D-19-0200.1 |
[62] |
ZENG LILI, WANG DONGXIAO, 2009. Intraseasonal variability of latent-heat flux in the South China Sea[J]. Theoretical and Applied Climatology, 97(1-2):53-64.
doi: 10.1007/s00704-009-0131-z |
[63] |
ZHANG GUANGJUN, MCPHADEN M J, 1995. The relationship between sea surface temperature and latent heat flux in the equatorial Pacific[J]. Journal of Climate, 8(3):589-605.
doi: 10.1175/1520-0442(1995)008<0589:TRBSST>2.0.CO;2 |
[64] |
ZHANG TING, SONG JINBAO, 2018. Effects of sea-surface waves and ocean spray on air-sea momentum fluxes[J]. Advances in Atmospheric Sciences, 35(4):469-478.
doi: 10.1007/s00376-017-7101-7 |
[1] | 吴钟启悦, 王雷, 陈立飞, 李秀保, 董志军. 海洋酸化和低氧及其节律性变化对海蜇碟状幼体的影响[J]. 热带海洋学报, 2022, 41(6): 114-124. |
[2] | 石睿, 陈举, 何云开, 隋丹丹, 舒业强. 寒潮过程和海洋锋面影响南海西北部大气波导演变的个例分析[J]. 热带海洋学报, 2022, 41(5): 29-42. |
[3] | 李卓, 黎伟标, 张奡褀. 台风登陆前华南地区降水日变化特征分析[J]. 热带海洋学报, 2022, 41(2): 26-37. |
[4] | 杨倩, 崔超然, 张宇, 刘志宇, 管玉平, 黄瑞新. 基于SODA资料的南海表层风能输入的空间分布与长期趋势研究[J]. 热带海洋学报, 2018, 37(6): 41-48. |
[5] | 杨龙奇. 海洋近表层流和上层温盐对1215号台风“天秤”的响应[J]. 热带海洋学报, 2015, 34(3): 13-22. |
[6] | 张燕, 何蕾, 殷克东, 姜玥璐, 姚景龙, 王东晓. 南海南部陆坡区生态要素垂向分布和日变化特征及其与物理环境的关系[J]. 热带海洋学报, 2014, 33(6): 68-72. |
[7] | 刘科峰, 蒋国荣, 陈奕德, 姚佳, 沈春. 基于卫星漂流浮标的南海表层海流观测分析*[J]. 热带海洋学报, 2014, 33(5): 13-21. |
[8] | 滕伟成, 管磊. 西北太平洋NOAA AVHRR海表温度日变化校正研究*[J]. 热带海洋学报, 2012, 31(4): 1-7. |
[9] | 刘希 ,胡秀清 . 厦门海域大气气溶胶光学厚度地基观测分析及卫星遥感检验[J]. 热带海洋学报, 2011, 30(4): 38-43. |
|