三亚近岸海浪观测特征及其对台风过程的响应
李骏旻(1983—), 男, 广东省广州市人, 副研究员, 博士, 从事海洋动力过程研究。email: |
Copy editor: 姚衍桃
收稿日期: 2022-07-13
修回日期: 2022-08-31
网络出版日期: 2022-09-01
基金资助
海南省自然科学基金(422MS160)
广东省科技计划项目(2021B1212050023)
国家自然科学基金(42130404)
中国科学院前沿科学重点项目(QYZDJ-SSW-DQC034)
Observation characteristics of coastal waves in Sanya and their responses to typhoon processes
Copy editor: YAO Yantao
Received date: 2022-07-13
Revised date: 2022-08-31
Online published: 2022-09-01
Supported by
Hainan Provincial Natural Science Foundation of China(422MS160)
Science and Technology Planning Project of Guangdong Province of China(2021B1212050023)
National Natural Science Foundation of China(42130404)
Key Research Program of Frontier Sciences, Chinese Academy of Sciences(QYZDJ-SSW-DQC034)
在南海三亚湾南部部署了长期监测站位, 于2020年4—10月、2021年12月—2022年2月等时段开展了覆盖4个季节的海浪观测。在观测数据的基础上, 对该海域波浪要素的基本统计规律及其对台风过程的响应特征开展了系统的分析。结果显示, 观测站位处的海浪受风场、地形、岸线和潮流动力等局地因素影响明显, 呈现近岸浪特征。由于受到水下地形的削弱和岸线边界的诱导, 站位处波浪长期维持向北传播, 波高和波周期均相对较小, 其中有效波高和平均周期在大部分时间内分别低于1m和4s。由于受到潮流和海陆风等动力因素的影响, 波高呈现强烈的日变化特征, 在与流向相反(相同)时, 波高和波陡均明显上升(下降); 在同向较强风速的作用下, 波高和波陡亦明显上升。站位波浪要素对台风过程有着显著的响应, 在潮流的协同作用下, 波高显著上升。当台风过程离站位较近时, 波浪能量的频率分布向低频段加强的同时, 也向高频段扩展, 且方向分布发生明显改变; 如果路径离站位距离较远, 则波浪能量主要通过涌浪的形式传至站位, 能量分布主要向低频扩展而方向分布基本不变。
李骏旻 , 李博 , 陈武阳 , 刘军亮 . 三亚近岸海浪观测特征及其对台风过程的响应[J]. 热带海洋学报, 2023 , 42(4) : 25 -35 . DOI: 10.11978/2022157
Long-term monitoring site was deployed in the southern Sanya Bay of the South China Sea, and continuous wave observations covering four seasons were carried out in April ~ October 2020 and December 2021 ~ February 2022. Based on the observational data, the basic statistical features of the wave in the sea area and their response characteristics to typhoon processes are systematically analyzed. The results show that the waves at the site are affected by local factors, such as wind field, bottom topography, shoreline, and current dynamics, thus showing characteristics of nearshore waves. Due to the weakening effect of shallow water topography and the control of shoreline boundary, the waves maintain long-term shoreward (i.e., northward) propagation with relatively small wave heights and periods, in which the significant wave heights and mean periods are less than 1 m and 4 s, respectively, for most of the time. Due to the influence of dynamic factors such as tidal current and sea-land breeze, the wave heights show a strong diurnal variation, and both wave heights and steepness increase (decrease) significantly when the flow direction is opposite to (the same with) the wave direction; driven by the strong wind speed in the same direction, the wave height and steepness also increased significantly. Waves respond significantly to the typhoon process, and the wave height increases significantly under the synergy of current. When the typhoon process is close to the site, the wave energy extends to both low and high frequencies, with the direction distribution changing significantly. If the path is far from the site, the wave energy mainly propagates to the site by the swell, and the energy distribution expands to low frequency while the direction distribution remains unchanged.
Key words: waves; tidal current; typhoon; in-situ observation
图1 本研究观测站位及观测期间台风“森拉克”和“红霞”的路径和强度变化a. 观测站与海南岛的相对位置; b. 海浪观测站附近海域的水下地形; c. 台风路径; 圆圈代表间隔6h的台风中心位置, 橙色、黄色和青色分别代表台风强度为强热带风暴、热带风暴和热带低压. 该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2019)3266号的标准地图制作, 底图无修改 Fig. 1 The location of the observational site in this study, and the path and intensity changes of the typhoons Sinlaku and Noul during the observational period |
图6 观测点水位、上层流速和周边海域风速、风向的实测时间变化过程线水位数据以国家高程基面为基准; 流速数据采用海流剖面中第二接近海表层的数据 Fig. 6 Measured variations of tidal level and velocity at the observational site, and wind speed and wind direction in the nearby area |
图7 观测点所在海域的流速玫瑰图(a)、经向流速随水位变化率的散点分布(b)、风玫瑰图(c)和风速在观测时段内的日周期变化(d)Fig. 7 (a) Velocity rose, (b) scattered distribution of meridional velocity with the change rate of water level, (c) wind rose, and (d) daily periodic variation of wind velocity in the area around the observational site |
图13 台风“森拉克”(a)和“红霞”(b)期间的波浪谱在频率上的分布及其时间变化Fig. 13 Frequency distribution and its variation of wave spectra during the typhoons Sinlaku (a) and Noul (b) |
[1] |
范顺庭, 王以谋, 1999. 黄河口海域特征波浪要素比的分析[J]. 海洋预报, 16(1): 22-28.
|
[2] |
冯兴如, 李近元, 尹宝树, 等, 2018. 海南东方近岸海域海浪观测特征研究[J]. 热带海洋学报, 37(3): 1-8.
|
[3] |
葛明达, 1984. 连云港波高波周期统计分布[J]. 海洋工程, (1): 40-50.
|
[4] |
黄心裕, 唐军, 王晓宇, 2022. 基于Prophet算法的海南近海波浪长时段时序分析与预测[J]. 海洋学报, 44(4): 114-121.
|
[5] |
李淑江, 李泽文, 范斌, 等, 2016. 海南岛东南近岸海浪观测及统计特征[J]. 海洋科学进展, 34(1): 1-9.
|
[6] |
孙璐, 黄楚光, 蔡伟叙, 等, 2014. 广海湾海浪要素的基本特征及典型台风过程的波浪分析[J]. 热带海洋学报, 33(3): 17-23.
|
[7] |
严珍珍, 杜小平, 范湘涛, 2019. 三亚湾海岸动力演变的数值模拟研究[J]. 海岸工程, 38(3): 176-186.
|
[8] |
姚顺, 马宁, 丁俊杰, 等, 2021. 规则波与流相互作用的数值模拟与不确定度分析[J]. 哈尔滨工程大学学报, 42(2): 172-178.
|
[9] |
张存智, 张健民, 窦振兴, 等, 1995. 三亚电厂码头航道泥沙洄淤预测[J]. 海洋环境科学, 14(4): 1-8.
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
/
〈 |
|
〉 |