海洋地质学

南海北部陆缘不均匀伸展及脉动式构造升降史*

  • 赵中贤 , 1, 2, 3 ,
  • 孙珍 , 1, 3 ,
  • 毛云华 4 ,
  • 张伙带 2
展开
  • 1.中国科学院边缘海与大洋地质重点实验室, 南海生态环境工程创新研究院, 中国科学院南海海洋研究所, 广东 广州 511458
  • 2.自然资源部海底矿产资源重点实验室, 中国地质调查局广州海洋地质调查局, 广东 广州 510760
  • 3.南方海洋科学与工程广东省实验室(广州), 广东 广州 511458
  • 4.中国电建集团昆明勘测设计研究院有限公司, 云南 昆明 650051
孙珍, 女, 研究员。email:

赵中贤(1985—), 男, 山东省菏泽市人, 研究员, 从事构造沉降与地球动力学研究。email:

*感谢中国海洋石油公司提供的反射地震数据。感谢编辑部老师和两位匿名审稿专家提出的宝贵建议。

Copy editor: 林强

收稿日期: 2022-06-10

  修回日期: 2022-08-15

  网络出版日期: 2022-09-07

基金资助

中国科学院青年创新促进会资助项目

自然资源部海底矿产资源重点实验室开放基金(KLMMR-2018-B-06)

南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0205)

国家重点研发计划(2021YFC3100604)

国家自然科学基金面上基金(42076077)

Heterogeneous extension and pulsed tectonic subsidence in the northern South China Sea margin*

  • ZHAO Zhongxian , 1, 2, 3 ,
  • SUN Zhen , 1, 3 ,
  • MAO Yunhua 4 ,
  • ZHANG Huodai 2
Expand
  • 1. CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China
  • 2. Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou 510760, China
  • 3. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
  • 4. Kunming Engineering Corporation Limited, Kunming 650051, China
SUN Zhen. email:

Copy editor: LIN Qiang

Received date: 2022-06-10

  Revised date: 2022-08-15

  Online published: 2022-09-07

Supported by

Youth Innovation Promotion Association CAS

Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources(KLMMR-2018-B-06)

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0205)

National Key Research and Development Program of China(2021YFC3100604)

National Natural Science Foundation of China(42076077)

摘要

南海北部陆缘在区域板块构造和深部地幔流影响下, 发育了复杂的构造、岩浆和基底升降过程。本文采用最新提出的伸展校正回剥技术和4条长地震剖面, 对南海北部陆缘新生代伸展变形和从张裂到裂后的构造升降过程开展详细研究。结果表明南海北部陆缘伸展减薄差别大, 强伸展与弱伸展不仅具有南北分带特点, 还具有东西交替出现的分块特征。琼东南盆地、珠江口盆地中部、台西南盆地伸展减薄大, 部分地壳被减薄至10km以下; 而珠江口西部和东部伸展减薄小, 地壳厚度大都在20km以上。强伸展与弱伸展陆缘总应变不同, 但应变速率均具有张裂早期慢、晚期快的二阶段特征。强伸展陆缘最大应变速率在4×10-15~7×10-15s-1之间, 地壳最大伸展系数为4~10; 弱伸展陆缘最大应变速率小于1×10-15s-1, 最大伸展系数小于1.9。南海北部陆缘构造升降具有脉动式、快慢交替的特征。张裂期构造沉降快, 裂后构造升降表现为4幕先慢后快及东早西晚的特点。陆缘西部琼东南盆地脉动式升降主要与深部地幔上升流引起的动力地形有关。陆缘东部珠江口和台西南盆地脉动式构造升降则可能受南海打开过程及吕宋岛弧与南海陆缘碰撞的影响。

本文引用格式

赵中贤 , 孙珍 , 毛云华 , 张伙带 . 南海北部陆缘不均匀伸展及脉动式构造升降史*[J]. 热带海洋学报, 2023 , 42(3) : 96 -115 . DOI: 10.11978/2022133

Abstract

Under the influence of regional plate tectonics and deep mantle flow, the northern continental margin of the South China Sea has developed the complicated tectonic, magmatic and basement subsidence processes. In this study, the modified technique of back-stripping and four long seismic profiles are applied to conduct an in-depth investigation into the Cenozoic extensional deformation of the northern South China Sea margin and the syn- to post-rift tectonic subsidence history. Results show a significant difference in the crustal thinning in the northern South China Sea margin. From east to west, the strong and weak extensional zones occur alternatively. The Qiongdongnan Basin, the middle segment of the Pearl River Mouth Basin, and the Taixinan Basin experienced strong extension, and part of the crust is extremely thinned to less than 10 km; while the west and east segments of the Pearl River Mouth underwent minor extension, and the crustal thickness mostly remains above 20 km. The total strain between the strong and weak extensional margins are largely different, however, the strain rates both show a two-stage characteristics: slow in the early syn-rift period and fast in the post-rift period. In the strong extensional margin, the largest strain rate ranges between 4×10-15 and 7×10-15·s-1, and the maximum extensional factor is 4~10; while in the weak extensional margin, the largest strain rate is less than 1×10-15·s-1, and the maximum extension factor is less than 1.9. Moreover, the northern continental margin of the South China Sea is characterized by pulsed and alternative fast and slow tectonic subsidence. The tectonic subsidence was rapid during the syn-rift period. The post-rift period is characterized by four episodes of slow-fast-slow-slow tectonic subsidence, which happened early in the east then late in the west. The pulsed tectonic subsidence in the Qiongdongnan Basin is mainly related to deep mantle upwelling. The pulsed tectonic subsidence in the Pearl River Mouth and the Taixinan Basins may be affected by the diachronous opening of the South China Sea and the collision between the Luzon Island Arc and the South China Sea margin.

被动大陆边缘是大陆岩石圈经伸展、减薄、破裂后形成的, 位于大陆与大洋之间, 是地表主要沉积沉降场所和油气聚集区域。由于初始构造背景和流变结构差异, 区域板块构造和深部地幔作用不同, 大陆岩石圈伸展、减薄、破裂过程以及陆缘岩浆、流体和沉积过程等存在较大差别, 形成不同陆缘类型, 如蛇纹岩化地幔剥露型(Pickup et al, 1996)、深部地幔过度伸展型(Huismans et al, 2011)以及富岩浆型(Geoffroy, 2005)等。陆缘基底升降过程也常偏离纯剪切理论模型的预测(Mckenzie, 1978; Jarvis et al, 1980), 如环北极陆缘盆地(Cloetingh et al, 1990)、澳大利亚西北陆缘北卡那封盆地(Driscoll et al, 1998)、北大西洋挪威陆缘(Praeg et al, 2005)、Faeroe-Shetland盆地(Nadin et al, 1997)和南大西洋加蓬盆地(Dupré et al, 2007)等。由于陆缘升降过程是岩石圈对充填负载(水和沉积等)和地壳内应力产生的构造负载的响应和地形调整(Zhao et al, 2018c; Zhao, 2021)。因此, 陆缘或盆地基底升降量包含充填负载升降量和构造负载升降量(构造升降)两部分(Zhao et al, 2018c; Zhao, 2021)。构造升降则由岩石圈尺度的均衡构造升降和由深部地幔流引起的动力升降(动力地形)组成(Zhao et al, 2018c; Zhao, 2021)。前者是岩石圈内厚度、密度或板内应力变化等在岩石圈底界面附近达到重力均衡后产生的地形变化, 如陆缘伸展减薄、前陆盆地逆冲增厚、相变、岩浆活动或板内应力变化等, 大都具有幅度小和波长短(< 102km)的特点(Praeg et al, 2005); 后者是指地幔密度变化产生的粘性流动作用到岩石圈底部形成的长波长(102~103km)、较大幅度的地表垂直位移变形, 板块俯冲和深部热地幔上涌等是地幔密度异常、热浮力和地幔对流的主要来源(Lithgow-Bertelloni et al, 1998; Praeg et al, 2005; 刘少峰, 2009)。由于引起动力地形的作用力是变化的, 所以动力地形是动态的, 与处于平衡状态的均衡地形不同(Lithgow-Bertelloni et al, 1997)。研究被动大陆边缘基底构造升降史, 对认识陆缘伸展、减薄、破裂过程、区域板块构造运动和深部地幔流等有重要意义。
南海受欧亚板块、印度洋和太平洋板块相互作用及影响, 是华南地块在新生代通过多幕伸展、减薄、以及自东向西穿时破裂后形成的(Briais et al, 1993; Wang et al, 2009; 任建业 等, 2011; Li et al, 2012a; Li et al, 2012b; 李三忠 等, 2018)。区域板块构造诱发了深部地幔上升流, 使南海地幔潜温比正常高出~100~300℃(Hoang et al, 1998; 鄢全树 等, 2007; Wang et al, 2012; Yang et al, 2019), 喷发大面积OIB类型碱性玄武岩, 分布在雷琼半岛(13—0Ma)(Wang et al, 2012; 徐义刚 等, 2012) 、珠江口盆地(20—17Ma)(邹和平 等, 1995)、北部湾盆地涠洲岛(5.9—0Ma)(李昌年 等, 2005)、中南半岛(17—0Ma)(Hoang et al, 1998)、南海海盆(13.8—3.5Ma)(王贤觉 等, 1984; 鄢全树 等, 2008; Zhao et al, 2019)以及礼乐滩和南沙地块(2.7—0.4Ma)(Kudrass et al, 1986)等。南海北部陆缘是全球被动陆缘中比较独特的一类, 地震成像发现下地壳高速层发育在南海东北陆缘上陆坡位置(Yan et al, 2001; 卫小冬 等, 2011), 而不是在陆缘伸展减薄最大的洋陆过渡带, 并缺失向海倾斜火山熔岩层(郝天珧 等, 2011), 与挪威—格陵兰等富岩浆型陆缘不完全一致(Geoffroy, 2005)。南海北部陆缘还广泛发育超伸展拆离构造(Lester et al, 2014; Lei et al, 2016; Wang et al, 2018; Zhao et al, 2018b; Zhou et al, 2018; 庞雄 等, 2018; 任建业 等, 2018), 又与伊比利亚—纽芬兰等贫岩浆型陆缘有一定相似之处。但南海大洋钻探(Wang et al, 2000; Li et al, 2015a; Sun et al, 2018)在洋陆过渡带既没有钻遇蛇纹岩化地幔, 也没有发现向洋倾斜熔岩反射层, 而是钻到了大洋中脊玄武岩, 发现南海陆缘陆洋转换快, 有大量岩浆参与(Sun et al, 2019), 并受俯冲板块影响(Zhao et al, 2022), 近年来多被认为是介于贫岩浆型和富岩浆型之间的过渡类型(Larsen et al, 2018; Ding et al, 2020)。此外, 前人对南海陆缘的伸展过程也有不同认识, 岩石圈不同圈层应变定量计算表明南海陆缘发生了随深度增加的伸展变形(佟殿君 等, 2009; 赵中贤 等, 2011; 雷超 等, 2013; Zhao et al, 2018b), 然而部分反射地震解释却揭示有蛇纹岩化地幔的剥露(Franke et al, 2014; 任建业 等, 2018)。在板块构造、深部地幔流、岩石圈差异伸展和岩浆过程等影响下, 南海北部陆缘基底构造升降史也很复杂, 出现幕式和脉动式特征(焦养泉 等, 1997; 林畅松 等, 1999; 吴能友 等, 2003; 马明 等, 2019), 而且裂后沉降还有早期慢后期快的特点, 如琼东南和莺歌海盆地裂后早期慢速沉降发生在23—11.6Ma, 晚期快速沉降发生在11.6—0Ma(Xie et al, 2006; 崔涛 等, 2008; 袁玉松 等, 2008; Zhao et al, 2013; Shi et al, 2017); 珠江口盆地珠三凹陷裂后早期慢速沉降时间为30—18.5Ma, 后期快速沉降时间为18.5—16Ma(陈梅 等, 2017); 珠一凹陷裂后快速沉降也出现在18.5—16.5Ma(赵中贤 等, 2010; 刘明辉 等, 2015); 珠二凹陷裂后快速沉降发生在23—14Ma(Xie et al, 2014; He et al, 2017); 台西盆地裂后快速沉降发生在30—18Ma(Lin et al, 2003)。前人也提出了多种不同的解释, 如岩石圈随深度伸展(Davis et al, 2004; 佟殿君 等, 2009; Yin et al, 2011; 雷超 等, 2013), 裂后拉伸和地壳减薄(袁玉松 等, 2008; Zhao et al, 2013), 下地壳流(Clift et al, 2015)、岩浆侵入(Shi et al, 2005)、地幔热异常(杨军 等, 2015; Shi et al, 2017)以及地幔上升流引起的动力地形(Lithgow-Bertelloni et al, 1997; Wheeler et al, 2000; Wheeler et al, 2002; Xie et al, 2006; Zhao, 2021)等。但这些工作多分散在某个盆地或区域, 或聚焦在裂后某个阶段, 缺少对整个陆缘从张裂开始的完整认识。此外, 前人多采用常规回剥方法计算载水盆地沉降(Sclater et al, 1980)或空盆构造沉降(Zhao et al, 2013), 由于该方法无法消除张裂阶段早期地层受后期多幕拉伸减薄的影响, 并不能准确获得张裂阶段各时期地层厚度和构造升降量(Zhao, 2021)。因此, 本文拟采用Zhao(2021)提出的伸展校正回剥技术, 对南海北部陆缘的4条测线详细开展随时间变化的伸展应变速率计算和基底构造升降史研究, 深入认识陆缘新生代伸展应变特征和从张裂到裂后的构造升降过程。

1 地质概况

南海是西太平洋边缘海, 处于欧亚、印度—澳大利亚和太平洋板块交汇处, 其西、南、东三面被弧形俯冲带环绕(Li et al, 2021)。南海北部陆缘宽阔, 前震旦纪结晶基底和早古生代加里东褶皱带广泛分布, 与邻近华南块体具有相同的构造属性(Sun et al, 2014a)。中生代, 南海北部陆缘受古太平洋俯冲影响, 发育燕山期花岗岩和主动大陆边缘(Sun et al, 2014a)。陆缘从主动向被动转变多被认为发生在晚白垩纪到早古近纪(~100—55Ma)(Taylor et al, 1983; Shi et al, 2012; Ye et al, 2018)。张裂初始不整合进一步揭示陆缘东部张裂发生在古近纪, 并在晚始新世传播到西部(Franke et al, 2014)。新生代多幕伸展活动(Franke et al, 2014; Ye et al, 2020)不仅在南海陆缘形成了许多大型沉积盆地, 如台西南、珠江口、琼东南和莺歌海盆地等, 也使大陆岩石圈在~33Ma破裂和发生海底扩张(图1)。大洋钻探和海底磁条带揭示海盆打开首先发生在东部和西北次海盆, 在~23.6Ma向西南次海盆传播, 并在~16—15Ma停止扩张(Taylor et al, 1983; Briais et al, 1993; Li et al, 2015b; Sun et al, 2018)。
图1 南海地形及数据分布与研究区域构造

南海洋盆由东部次海盆、西北次海盆和西南次海盆组成, 白色短线为海底磁异常条带(Briais et al, 1993)。南海北部陆缘自西向东分布有莺歌海、琼东南、珠江口和台西南盆地。盆地内灰色直线为多道地震测线, 红色圆点为油气钻井和大洋钻探钻孔。加粗红色直线Lines 1—4为本文用到的4条反射地震测线, 线上取点P1—24开展精细基底构造升降分析。基于审图号GS(2016)1609的标准地图制作

Fig. 1 Regional structural map (a) and topography and data distribution of the South China Sea (b). The South China Sea Basin is composed of the eastern sub-basin, the northwestern sub-basin and the south-western sub-basin. The white short lines are the seafloor magnetic anomalies (Briais et al, 1993). In the northern continental margin of the South China Sea, there are the Yinggehai, Qiongdongnan, Pearl River Mouth and Taixinan Basins from west to east. The gray straight lines are multi-channel seismic survey lines, and the red dots mark the oil and gas wells and IODP drilling cites. The bold red lines 1-4 stand for four reflection seismic lines used here, and points P1-24 are selected to perform the detailed tectonic subsidence analysis.

珠江口盆地位于南海北部陆缘中部, 是南海最大的沉积盆地, 盆地内断层走向变化指示存在两幕伸展活动, 第一幕伸展发生在早始新世, 应力方向为NNW—SSE向; 第二幕伸展发生在晚始新世—早渐新世, 应力方向为NS向(Franke, 2013; Ye et al, 2020)。两幕伸展分别形成了早期文昌组陆相、湖相碎屑沉积, 以及恩平组湖相、河流相和浅海相沉积(赵中贤 等, 2009; Jian et al, 2019; Xie et al, 2019)。盆地裂后期构造相对平静, 发育海相环境, 但仍有大量小断层形成于深水区, 走向变为NWW向(Sun et al, 2014b)。通过多幕构造活动, 盆地形成了南北分带的构造格架, 包括北部隆起带、珠一坳陷带(恩平、西江、惠州凹陷等)、珠三坳陷带(阳江、文昌凹陷等)、中央隆起带(东沙、神狐隆起)、珠二坳陷带(白云、开平、顺德凹陷等)、南部隆起带和珠四坳陷带(荔湾、鹤山、兴宁、靖海凹陷等)(图1)(Pang et al, 2018)。
琼东南盆地位于南海北部陆缘西部, 东部是珠江口盆地, 西部是莺歌海盆地(图1)。盆地张裂阶段发生于45—23Ma (Zhao et al, 2018c), 伸展断层走向为NE、E和NW向, 并在~23Ma停止活动(Zhao et al, 2018c; Lei et al, 2020)。盆地基底发生强烈减薄, 东部主要发育对称地堑, 西部为不对称半地堑结构(Zhao et al, 2015a)。23Ma后盆地进入裂后阶段, 构造沉降早期慢, 后期快(Zhao et al, 2018c)。裂后岩浆活动主要在东部(Gao et al, 2016; Lei et al, 2016; Zhao et al, 2016), 多边形断层出现在中中新世(吴时国 等, 2009)。盆地基底格架仍表现出南北分带的特征, 包括北部坳陷带、中央坳陷带(长昌、宝岛、松南、陵水和乐东凹陷)和南部隆起带(Zhao et al, 2015a; Lei et al, 2016)。盆地沉积环境由晚始新世的河湖相、渐新世海陆过渡相、早中中新世滨浅海相转变为晚中新世以后的浅海—深海相(Xie et al, 2008; Su et al, 2011)。

2 数据与方法

2.1 多道地震数据

在南海北部陆缘的琼东南和珠江口盆地, 选取4条多道地震测线, 在钻井数据约束下开展构造沉降计算和分析(图1)。测线1位于琼东南盆地西部, 从西北向东南依次过北部隆起、涯北凹陷、陵南低凸起、陵水凹陷和南部隆起带, 长约220km(图2)(Zhao, 2021)。测线2位于琼东南盆地东部, 从北向南依次过神狐隆起、长昌凹陷和南部隆起带, 共长195km(图3)(Zhao et al, 2015a)。沿多道地震测线1和2, 沉积层序、基底和Moho反射都很清晰, 其构造、地层和地壳结构等已有详细分析(Zhao et al, 2015a; Zhao, 2021)。上部新生代地层被划分出9个层序界面(45、33.9、28.4、25.5、23、16、11.6、5.5和0Ma)(图23)(Zhao et al, 2015a; Zhao et al, 2018c; Zhao, 2021), 下部壳幔边界Moho面具有低频、强振幅和中等连续反射特征, 双层反射时间在8—10s(图23)。Moho反射和沉积基底(45Ma)之间为残余地壳, 其厚度通过折射地震得到的地壳平均速度~6.5km·s-1 (Nissen et al, 1995; Qiu et al, 2001) 与残余地壳反射时间相乘计算得到(图23)。地震测线3位于珠江口盆地西部, 由北向南依次过北部隆起、恩平—阳江凹陷、神狐隆起、开平凹陷和南部隆起, 长约260km(毛云华 等, 2020)(图4)。地震测线4位于珠江口盆地中部, 从北向南依次经过北部隆起、西江凹陷、番禺低隆起、白云凹陷、云荔低凸起、荔湾凹陷和南部隆起, 长约390km(图5)。地震测线3和4由中国海洋石油公司提供, 在钻井约束下, 其新生代地层解释了10个地层界面(56、38、33.9、23、21、16、12.5、10、5.3和0Ma), 并在图45中标出了其中的8个。由于两条测线的Moho反射不清晰, Moho面深度和残余地壳厚度主要通过重力模拟得到(张云帆 等, 2007; Zhao et al, 2022), 其中测线3参考了张云帆 等(2007)的结果(图4), 测线4参考了Zhao等(2022)的重力模拟结果(图5)。
图2 琼东南盆地西部地震测线1(Line 1)

位置见图1。a. 未解释地震剖面; b. 解释地层、断层和地壳结构。改自Zhao (2021)

Fig. 2 Seismic line 1 in the western part of the Qiongdongnan Basin with the location shown in Fig. 1. (a) Uninterpreted seismic section; (b) interpreted stratigraphy, faults and crustal structure. After Zhao (2021)

图3 琼东南盆地东部地震测线2(Line 2)

位置见图1。a. 未解释地震剖面; b. 解释地层、断层和地壳结构。改自Zhao et al (2015)

Fig. 3 Seismic line 2 in the eastern part of the Qiongdongnan Basin with the location shown in Fig. 1. (a) Uninterpreted seismic section; (b) interpreted stratigraphy, faults and crustal structure. After Zhao et al (2015)

图4 珠江口盆地西部地震测线3(Line 3)

位置见图1。a. 未解释地震剖面; b. 解释地层、断层和地壳结构。改自毛云华 等(2020)

Fig. 4 Seismic line 3 in the western part of the Pearl River Mouth Basin with the location shown in Fig. 1. (a) Uninterpreted seismic section; (b) interpreted stratigraphy, faults and crustal structure. After Mao et al (2020)

图5 珠江口盆地中部地震测线4(Line 4)

位置见图1。a. 未解释地震剖面; b. 解释地层、断层和地壳结构

Fig. 5 Seismic line 4 in the middle Pearl River Mouth Basin with the location shown in Fig. 1. (a) Uninterpreted seismic section; (b) interpreted stratigraphy, faults and crustal structure

2.2 伸展校正回剥技术

张裂陆缘一般经历多幕伸展活动, 为校正后期伸展减薄过程对早期地层厚度的影响, 准确获得从张裂到裂后的无负载构造沉降, 这里选取了Zhao(2021)提出的一维伸展校正回剥技术(公式1)。与常规方法相比(Sclater et al, 1980; Zhao et al, 2013), 新方法不仅可以对埋藏地层进行去压实, 校正沉积负载、水负载、古水深和基准面变化的影响, 还可以校正沉积盆地多幕伸展过程中后期拉伸对早期地层减薄的影响。
EBS i = β wc β i × ST i × ρ m ρ s ρ m + PWD i × ρ m ρ w ρ m ΔBL i
式中ρwρsρm分别是水(1030kg·m-3)、沉积物和软流圈地幔(3184kg·m-3)平均密度。βwc是全地壳总伸展系数(为初始地壳厚度32km与现今地壳厚度比值, 地震测线1—4的地壳总伸展系数见图6—9所示, 由于下地壳高速层和岩浆体主要分布在南海东北陆缘(Yan et al, 2001; 卫小冬 等, 2011), 对陆缘中、西部的4条测线影响较小, 这里在计算4条测线的地壳伸展系数时, 没有考虑岩浆作用的影响), βi是从张裂开始到时间i的全地壳伸展系数。EBSiSTiPWDi和ΔBLi分别是从张裂开始到时间i的无负载构造沉降、去压实沉积物厚度、古水深和基准面变化。
图6 地震测线1(位置见图1)根据全地壳总伸展系数和断层活动速率计算的各时期应变速率(a)和全地壳伸展系数(b)

Fig. 6 The strain rate (a) and whole crustal extension factor (b) of each period calculated on the basis of the total crustal extension factor and fault growth rates along the seismic line 1 (see Fig. 1 for the location)

图7 地震测线2(位置见图1)根据全地壳总伸展系数和断层活动速率计算的各时期应变速率(a)和全地壳伸展系数(b)

Fig. 7 The strain rate (a) and whole crustal extension factor (b) of each period calculated on the basis of the total crustal extension factor and fault growth rates along seismic line 2 (see Fig. 1 for the location)

图8 地震测线3(位置见图1)根据全地壳总伸展系数和断层活动速率计算的各时期应变速率(a)及全地壳伸展系数(b)

Fig. 8 The strain rate (a) and whole crustal extension factor (b) of each period calculated on the basis of the total crustal extension factor and fault growth rates along seismic line 3 (see Fig. 1 for the location)

图9 地震测线4(位置见图1)根据全地壳总伸展系数和断层活动速率计算的各时期应变速率(a)及全地壳伸展系数(b)

Fig. 9 The strain rate (a) and whole crustal extension factor (b) of each period calculated on the basis of the total crustal extension factor and fault growth rates along seismic line 4 (see Fig. 1 for the location)

为消除后期拉伸减薄的影响和恢复地层初始沉积时的厚度, 这里需要两个参数: (1)现今地层剖面通过逐层回剥去压实后的地层厚度; (2)陆缘伸展过程中随时间变化的应变速率或伸展系数。Zhao(2021)认为断层活动速率随时间变化可以反映陆缘多幕伸展强度的变化, 提出根据各时期断层活动速率(fi)对总应变(全地壳总伸展系数βwc)进行权重分配(公式2), 据此计算各时期断层强度加权的应变速率(Gi); 同时给出公式(3)计算从张裂开始到地层i形成时的全地壳伸展系数(βi)。
G i = ln β wc / i = 1 n f i Δ t i f i
β i = exp i = 1 n G i ( t ) Δ t i
其中, βwc是全地壳总伸展系数(总应变), n是地层个数, Δti是地层i经历的时间(Myr), fi是与地层i对应的断层活动速率(m·myr-1), Gi是与地层i对应的断层活动速率加权的应变速率, βi是从张裂开始到地层i形成时的全地壳伸展系数。
地震测线1—4的断层解释见图2—5, 沿各测线各时期的断层活动速率(断层上下盘同一地层厚度差与形成时间的比值, 单位m·myr-1)见表1—4。利用公式(2)和(3)计算的4条测线的应变速率和伸展系数见图6—9
表1 测线1断层活动速率

Tab. 1 Fault growth rates along line 1

断层 活动速率/(m·Myr-1)
45—33.9Ma 33.9—28.4Ma 28.4—25.5Ma 25.5—23Ma 23—0Ma
F1 120.8 283.5 236.2 232.0 -
F4 9.8 16.2 58.0 29.6 -
F5 70.7 82.4 57.7 46.2 -
F6 125.9 85.5 201.2 26.7 -
F7 43.1 62.0 271.5 - -
F8 35.9 83.6 88.7 - -
F9 122.1 99.5 205.4 - -
F10 178.3 339.8 370.4 200.5 -
F14 - 121.7 109.9 181.0 -
F15 - 60.4 26.4 55.1 -
F16 - - - 78.3 -
F17 - - - 54.9 -
F18 - 43.6 67.6 317.6 -
F19 31.5 55.5 - 231.5 -
F20 22.2 29.2 - 140.6 -
平均 71.1 90.0 145.7 123.8 0

注: 数据来自Zhao(2021)

表2 测线2断层活动速率

Tab. 2 Fault growth rates along line 2

断层 活动速率/(m·Myr-1)
45—33.9Ma 33.9—28.4Ma 28.4—25.5Ma 25.5—23Ma 23—0Ma
F1 - 45.9 135.0 370.4 -
F2 - 74.3 - 41.9 -
F3 57.3 178.6 - - -
F4 116.4 20.3 - - -
F5 39.3 106.5 150.9 - -
F6 35.8 267.1 107.5 - -
F7 122.6 107.9 102.4 80.8 -
F8 41 196.8 - 131.8 -
F9 32.7 84.9 - 127.1 -
平均 63.6 120.3 124.0 150.4 0
表3 测线3断层活动速率

Tab. 3 Fault growth rates along line 3

断层 活动速率/(m·Myr-1)
56—38Ma 38—33.9Ma 33.9—23Ma 23—16Ma 16—0Ma
F1 23.7 56.5 - - -
F2 10.8 98.5 16.4 37.7 -
F3 - 45.8 - - -
F4 10.6 47.9 - - -
F5 16.9 32.7 17 - -
F6 14.8 99.4 - - -
F7 - 38.1 - - -
F8 45 62 13.2 - -
F9 197 88.9 - - -
F10 - - - 18.9 -
F11 49.3 33 11.5 10.9 -
F12 14.9 - - 12.7 -
F13 13.2 - - - -
F14 13.6 - 10.3 - -
F15 - 11 - - -
平均 37.3 55.8 13.7 20 0

注: 数据来自毛云华 等(2020)

表4 测线4断层活动速率

Tab. 4 Fault growth rates along line 4

断层 活动速率/(m·Myr-1)
56—38Ma 38—33.9Ma 33.9—23Ma 23—16Ma 16—10Ma 10—0Ma
F1 - 111.4 68.4 66.7 21.8 -
F2 44 179.4 77.6 - 11.7 -
F3 - 45.9 - - 4.9 -
F4 70 144.9 25.9 14 59.6 -
F5 157.1 363.8 19.6 - 38.7 -
F6 84.6 86.6 7.6 - - -
F7 66.5 221 12.8 - - -
F8 29.9 327.8 - - - -
F9 21.2 613.8 - - - -
平均 67.6 232.7 30.3 40.4 27.3 0
现今地层剖面通过逐层回剥可获得去压实后的厚度, 这是在保持沉积物颗粒密度不变的条件下, 把地层按地质年代从新到老的顺序逐层剥去, 剩下地层的孔隙和厚度恢复到原来的状态(Sclater et al, 1980)。地层正常压力下单一岩性的孔隙度和深度关系服从指数分布 ϕ = ϕ 0 × e c z, ϕ是深度为z处的孔隙度, ϕ 0是地表孔隙度, c是压实系数。实际地层包含多种岩性, 应采用混合比例加权法求得孔隙度。例如, 已知地层a上下界面深度为Z1、Z2, 经回剥去压实恢复到地层a′, 上下界面深度为Z1′、Z2′。假设地层a、a′的地表孔隙度为 ϕ 0, 压实系数为c, 地层a单位面积上孔隙水所占体积为: V w = Z 1 Z 2 ϕ 0 × e c z d z = ϕ 0 c ( e c z 1 e c z 2 ), 地层a单位面积上沉积颗粒体积为: V s = Z 2 Z 1 ϕ 0 c ( e c z 1 e c z 2 ), 当地层a经去压实恢复到地层a′时, 根据沉积物颗粒体积不变, 即可得到公式(4), 据此计算出去压实后各地层界面的深度和厚度。
Z 2 ' Z 1 ' ϕ 0 c ( e c z 1 ' e c z 2 ' ) = Z 2 Z 1 ϕ 0 c ( e c z 1 e c z 2 )
通过剥去上覆地层, 公式(1)中剩余沉积地层总厚度为ST的平均密度为: ρ s = i ϕ i ρ w + ( 1 ϕ i ) ρ g i T i ST, 其中 ϕ i ρ g i T i分别是回剥后剩余沉积物中第i层的平均孔隙度、颗粒密度和地层厚度。
除了多幕伸展应变速率, 地层厚度、岩性、古水深和基准面变化等都是影响基底构造沉降计算(公式1)的重要参数。为获取这些参数, 前人开展了大量工作, 如琼东南盆地高精度的构造—沉积—沉降过程分析(Xie et al, 2006; Zhao et al, 2015b, 2018a, 2018c; Zhao, 2021)和珠江口盆地伸展模拟和沉积—沉降过程分析(赵中贤 等, 2009, 2010, 2011; Xie et al, 2014; 毛云华 等, 2020)等。利用这些参数本文计算了沿4条测线各时期的构造升降速率(图10—13)。并对24口模拟井的构造升降过程进行了详细分析(图1415)。同时总结了南海北部陆缘裂后脉动式构造升降的时空变化规律(图16)。
图10 沿地震测线1(位置见图1)计算的8个阶段无负载构造沉降速率

Fig. 10 Tectonic subsidence rates during 8 periods calculated along the seismic line 1 (see Fig. 1 for the location)

图11 沿地震测线2(位置见图1)计算的8个阶段无负载构造沉降速率

Fig. 11 Tectonic subsidence rates during 8 periods calculated along the seismic line 2 (see Fig. 1 for the location)

图12 沿地震测线 3(位置见图1)计算的9个阶段无负载构造沉降速率

Fig. 12 Tectonic subsidence rates during 9 periods calculated along the seismic line 3 (see Fig. 1 for the location)

图13 沿地震测线4(位置见图1)计算的9个阶段无负载构造沉降速率

Fig. 13 Tectonic subsidence rates during 9 periods calculated along the seismic line 4 (see Fig. 1 for the location)

图14 琼东南盆地12口模拟井在9个时间点(45、33.9、28.4、25.5、23、16、11.6、5.5、0Ma)的构造沉降曲线

绿色虚线代表破裂不整合界面23Ma

Fig. 14 Tectonic subsidence curves of 12 simulated wells in the Qiongdongnan Basin at 9 ages (45, 33.9, 28.4, 25.5, 23, 16, 11.6, 5.5, 0 Ma). The green dashed line represents the breakup unconformity of ~23Ma.

图15 珠江口盆地12口模拟井在10个时间点(56、38、33.9、23、21、16、12.5、10、5.3、0Ma)的构造沉降曲线

绿色虚线代表破裂不整合界面33.9Ma

Fig. 15 Tectonic subsidence curves of 12 simulated wells in the Pearl River Mouth Basin at 10 ages (56, 38, 33.9, 23, 21, 16, 12.5, 10, 5.3, 0Ma). The green dashed line represents the breakup unconformity of ~33.9Ma

图16 南海北部陆缘裂后东早西晚的两幕慢沉降(I、Ⅲ)和两幕快沉降(Ⅱ、Ⅳ)

台西南和莺歌海盆地数据分别来自Lin等(2003)和Xie等(2006)

Fig. 16 Two episodes of slow subsidence (I, Ⅲ) and two episodes of fast subsidence (Ⅱ, Ⅳ) in the post-rift period in the northern South China Sea. Subsidence data in the Taixinan and Yinggehai Basins are taken from Lin et al (2003) and Xie et al (2006), respectively

3 结果与讨论

3.1 南海北部陆缘强、弱伸展南北分带及东西分块特征

南海北部陆缘具有大陆岩石圈伸展减薄特征, 通过对比分析珠江口盆地和琼东南盆地4条测线的地壳厚度(图2—5), 发现南海北部陆缘伸展减薄空间上差别很大, 强伸展与弱伸展不仅表现为南北分带的特点(图1), 地壳在隆起带伸展减薄小, 在坳陷带伸展减薄大(图2—5), 还表现为东西交替出现的分块特征(图1)。陆缘西部琼东南盆地伸展减薄程度大, 中央凹陷剩余地壳厚度均小于10km, 如陵水凹陷地壳厚度为~7.8km(图2), 长昌凹陷为~2.8km(图3)。中央凹陷两侧隆起地壳厚度则增加至~16~25km(图23)。然而, 珠江口盆地西部陆缘伸展减薄程度低, 地壳厚度由陆向海较均匀, 保持在~18~26km(图4)。珠江口盆地中部陆缘从陆向海方向伸展减薄程度增加, 地壳厚度从北部隆起的26km减薄至南部白云—荔湾深水区的8~9km(图5)。珠江口盆地东部陆缘伸展减薄程度再次减小, 其中潮汕凹陷地壳厚度为~25km (张云帆 等, 2007)。台西南盆地陆缘又出现了从陆向海的快速伸展减薄, 北部陆架区地壳厚度为~25km, 陆坡区减薄至~4km, 至洋陆过渡带地壳厚度又增加至~12~15km(Lester et al, 2014)。因此, 南海北部陆缘地壳伸展减薄东西向很不均匀(图1a), 弱伸展区域地壳厚度大都在20km以上, 强伸展区域则有地壳厚度被显著减薄至10km以下(图2—5), 而且陆缘西部琼东南盆地伸展减薄比东部珠江口盆地更为显著(图35)。南海北部陆缘这种空间不均匀伸展特征是由中生代基底构造格架和新生代伸展过程联合控制的。南海北部陆缘中生代基底是由NE和NW走向大型断裂分割的不同属性地块组成的, 晚中生代地层和沉积环境也具有东西分异特征(陈汉宗 等, 2005; 易海 等, 2012; Sun et al, 2014a)。新生代在近SE向伸展应力作用下, 陆缘产生了南北分带的构造格架, 同时陆缘伸展过程中还发生了顺时针旋转(Sun et al, 2009), 旋转极在Briais等(1993)根据磁条带确定的印支地块西侧, 使陆缘东部岩石圈破裂和海底扩张都要比西部早。当东部海盆扩张时(~33—23.6Ma), 西部陆缘仍在持续伸展减薄, 使陆缘西部琼东南盆地伸展应变明显比东部珠江口盆地大(Hayes et al, 2005)。由于基底地块构造属性不同, 具有东西分异特征(陈汉宗 等, 2005; 易海 等, 2012; Sun et al, 2014a), 在新生代伸展作用下陆缘还表现出东西向强伸展和弱伸展交替出现的分块特征(图1)。那么, 强、弱伸展块体之间如何受大型走滑断层调节?走滑断层与洋盆内转换断层和南部陆缘走滑断层(图1a)是否相连?这些问题还需进一步分析。

3.2 南海北部陆缘伸展先慢后快二阶段特征

通过应变速率分析, 发现南海北部陆缘强伸展与弱伸展地块虽然拉伸应变量不同, 但应变速率在时间上均具有先慢、后快二阶段特征(图6—9)。在强伸展陆缘, 如琼东南盆地和珠江口盆地中部陆缘, 最大伸展应变速率均在4×10-15~7×10-15s-1之间, 地壳最大伸展系数为4~10(图679)。在弱伸展陆缘, 如珠江口盆地西部, 最大拉伸应变速率小于1×10-15s-1, 最大伸展系数小于1.9(图8)。但南海北部陆缘张裂期应变均表现出先慢后快二阶段特征。在琼东南盆地, 应变速率在张裂早期(45—28.4Ma)均小于3×10-15s-1, 在张裂晚期(28.4—23Ma)增加到4×10-15~7×10-15s-1(图67)。在珠江口盆地中部陆缘, 应变速率在张裂早期(56—38Ma)小于1×10-15s-1, 在张裂晚期(38—33.9Ma)达到4×10-15s-1(图9)。在珠江口盆地西部陆缘(开平凹陷除外), 应变速率在张裂早期(56—38Ma)小于3×10-16s-1, 在张裂晚期(38—33.9Ma)增加至1×10-15s-1(图9)。张裂陆缘伸展应变先慢后快的特点具有全球性特征, 如大西洋共轭陆缘和澳大利亚—南极共轭陆缘等, 被认为是由应变积累引起岩石圈强度降低和应变速率增加导致的(Brune et al, 2016)。在珠江口盆地西部陆缘开平凹陷, 张裂期应变速率则有早快、晚慢的特点, 可能与存在继承性基底断层, 并在张裂早期就被活化有关(图4)。在珠江口盆地西部和中部裂后阶段(33.9—16Ma), 发育弱断层活动和低伸展应变(图4589), 可能与南海穿时打开过程相关。

3.3 南海北部陆缘脉动式构造升降及裂后先慢后快、东早西晚的发育特征

采用伸展校正回剥新技术, 获得了南海北部陆缘从张裂到裂后各时期构造升降量和速率(图10—15), 发现陆缘构造升降从东到西都表现为脉动式、快慢交替的特征(图10—15)。陆缘西部琼东南盆地自始新世以来经历了快—慢—快—慢4个阶段构造升降过程(图101114): 张裂早期(45—28.4Ma)基底构造沉降快, 张裂晚期(28.4—23Ma)至裂后早期(23—11.6Ma)基底构造沉降慢或缓慢抬升, 裂后中期(11.6—5.5Ma)基底构造沉降变快, 裂后晚期(5.5—0Ma)基底构造沉降再次变慢。珠江口盆地新生代以来主要经历了快—慢—快—慢—快5个阶段构造升降演化(图121315): 张裂阶段(56—33.9Ma)基底构造沉降大, 裂后早期(33.9—23Ma)基底构造沉降慢, 裂后中期(23—10Ma)基底构造沉降快, 裂后晚期10—5.3Ma基底构造沉降减慢, 裂后晚期5.3—0Ma基底构造沉降再次加快。在珠江口盆地中部发生强伸展减薄的白云—荔湾深水区, 张裂后期(38—33.9Ma)基底也出现缓慢构造沉降或抬升(P22—P24, 图15)。在陆缘局部隆起或断层上升盘, 张裂早期基底均表现为构造抬升, 如图1415中的P7、P12、P13、P15、P17、P18、P20和P23。
结合前人在台西南盆地(Lin et al, 2003)和莺歌海盆地(Xie et al, 2006)开展的构造沉降研究, 发现南海北部陆缘各盆地脉动式、快慢交替构造升降在时间上并不同步, 尤其是在裂后阶段, 构造升降表现为4幕先慢后快及东早西晚的特征(图16): 第1幕缓慢构造沉降或抬升发生在陆缘破裂前后, 持续约10~20Myr, 最早出现在东部台西南盆地(Lin et al, 2003), 然后逐渐向西迁移至珠江口盆地和琼东南盆地(图16)。第2幕快速构造沉降持续~10Myr, 最早也出现在台西南盆地, 并向西迁移至珠江口、琼东南和莺歌海盆地(图16)。第3幕构造抬升和第4幕构造沉降发生顺序也都东早西晚, 持续时间均约5Myr(图16)。

3.4 南海北部陆缘构造升降机制

南海北部陆缘脉动式、快慢交替的构造升降特征与理论预测的张裂期快、裂后慢二阶段沉降模型不同(Mckenzie, 1978; Jarvis et al, 1980), 可能受岩石圈不规则伸展、区域板块作用和深部地幔活动等影响。前人研究表明, 台西南盆地渐新世(~37—30Ma)构造抬升是由陆缘减薄过程中小规模次生地幔对流引起的(Lin et al, 2003), 随后地幔对流减弱诱发了快速构造沉降(~30—18Ma)(Lin et al, 2003)。珠江口盆地与东部次海盆直接相邻, 其在陆缘破裂前后的缓慢构造沉降或抬升(~38—23Ma)可能与软流圈上涌产生的次生地幔流相关(Xie et al, 2021), 也可能与岩浆底辟有关(Shi et al, 2005), 随后的快速构造沉降(~23—10Ma)也有多种解释, 包括南海洋中脊跳跃(He et al, 2017; Xie et al, 2021), 岩浆活动后的热冷却(Shi et al, 2005), 动力地形(Xie et al, 2006), 沉积负载引起下地壳流(Liao et al, 2011; Clift et al, 2015)等。盆地在~10—5.3Ma的构造抬升和在~5.3—0Ma的构造沉降被解释为与吕宋岛弧与南海陆缘碰撞和随后台湾造山运动有关(He et al, 2017)。珠江口盆地荔湾深水区在~23Ma后的大幅度快速沉降(P24, 图15)还可能叠加了邻近大洋岩石圈热冷却拖曳作用。在琼东南盆地, 前人研究表明陆缘破裂前后的深部地幔上升流引起了基底缓慢构造沉降或抬升(~28.4—11.6Ma)(Zhao, 2021), 随后地幔上升流减弱或消失产生了快速构造沉降(~11.6—5.5Ma)(Zhao, 2021)。盆地在~5.5—0Ma慢速构造沉降可能与台湾造山运动相关, 但其西北部的快速构造沉降(P1—P3, 图14)很可能由红河右行走滑引起(Zhao et al, 2018c)。由此可见, 前人对南海北部陆缘构造升降的解释复杂多样, 尤其是对珠江口盆地构造升降机制的解释充满争议。南海北部陆缘脉动式构造升降, 尤其是裂后先慢后快、东早西晚的特点, 是否与南海自东向西穿时破裂过程相关, 是否有较为统一的机制来解释, 还需要开展更多的工作。结合前人研究, 本文初步分析认为珠江口盆地裂后早期(33.9—23Ma)的缓慢沉降或抬升可能与陆缘破裂和南海打开相关, 由于陆缘岩石圈破裂造成岩石圈挠曲回弹和南海快速扩张导致软流圈上涌诱发次生地幔对流, 使陆缘沉降减缓甚至抬升; 随着南海持续扩张, 洋中脊不断远离陆缘、向南跃迁直至停止活动, 陆缘受到地幔对流的影响不断减弱, 并在裂后23—10Ma发生快速沉降(图1516)。由于琼东南盆地远离西南次海盆(~500km), 琼东南盆地所在陆缘裂后(23—11.6Ma)的缓慢沉降或抬升受洋中脊传播到并在西南次海盆扩张的影响小, 更可能是受到已经揭示的地幔上升流引起的动力抬升的控制(Zhao, 2021), 并随着动力抬升的消失, 陆缘在11.6—5.5Ma产生快速沉降(图1416)。此外, 在地壳强烈减薄区域, 如白云凹陷(P22, 图516)、荔湾凹陷(P24, 图516)和台西南盆地(Lin et al, 2003)等, 陆缘均在张裂后期有很大的伸展应变速率(图9), 但却产生了缓慢沉降或抬升(P22、P24, 图15), 这可能与陆缘强烈伸展引起的次生地幔对流有关。次生地幔对流是岩石圈伸展过程中由于软流圈上涌和温度结构不均匀产生的小型地幔粘性流动, 尺度通常在~100km或更小(Keen, 1985; Buck, 1986)。小型地幔流动将会减缓岩石圈冷却沉降, 并使地表抬升(Buck, 1985), 但其幅度通常受裂谷形态、应变速率和黏度的影响(Buck, 1986)。在南海陆缘强伸展减薄区, 次生地幔对流强度如何, 对陆缘升降带来多大影响, 还需要开展数值模拟加以具体分析。

4 结论

采用最新提出的伸展校正回剥技术, 对南海北部陆缘新生代伸展应变和从张裂到裂后的构造升降过程开展了详细研究。南海北部陆缘伸展减薄空间上差别大, 强伸展与弱伸展不仅具有南北分带特点, 还表现出东西交替出现的分块特征。琼东南盆地、珠江口盆地中部、台西南盆地陆缘伸展减薄大, 部分地壳厚度被减薄至10km以下; 而珠江口西部、珠江口盆地东部陆缘伸展减薄小, 地壳厚度大都在20km以上。强伸展与弱伸展陆缘拉伸应变不同, 但应变速率在时间上均具有张裂早期慢、晚期快的二阶段特征。强伸展陆缘最大伸展应变速率在4×10-15~7×10-15s-1之间, 地壳最大伸展系数为4~10; 弱伸展陆缘最大拉伸应变速率小于1×10-15s-1, 最大伸展系数小于1.9。南海北部陆缘构造升降具有脉动式、快慢交替的特征。张裂期构造沉降快, 裂后构造升降表现为4幕先慢后快及东早西晚的特点。陆缘西部琼东南盆地脉动式升降主要与深部地幔上升流引起的动力地形有关。陆缘东部珠江口和台西南盆地脉动式构造升降则可能受南海打开过程以及吕宋岛弧与南海陆缘碰撞的影响。
[1]
陈汉宗, 吴湘杰, 周蒂, et al, 2005. 珠江口盆地中新生代主要断裂特征和动力背景分析[J]. 热带海洋学报, 24(2): 52-61.

CHEN HANZONG, WU XIANGJIE, ZHOU DI, et al, 2005. Meso-Cenozoic faults in Zhujiang River Mouth Basin and their geodynamic background[J]. Journal of Tropical Oceanography, 24(2): 52-61. (in Chinese with English abstract)

[2]
陈梅, 施小斌, 刘凯, 等, 2017. 南海北缘珠三坳陷新生代构造沉降特征[J]. 海洋地质与第四纪地质, 37(6): 47-56.

CHEN MEI, SHI XIAOBIN, LIU KAI, et al, 2017. Cenozoic tectonic subsidence of the ZHU Ⅲ depression in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology & Quaternary Geology, 37(6): 47-56. (in Chinese with English abstract)

[3]
崔涛, 解习农, 任建业, 等, 2008. 莺歌海盆地异常裂后沉降的动力学机制[J]. 地球科学, 33(3): 349-356.

CUI TAO, XIE XINONG, REN JIANYE, et al, 2008. Dynamic Mechanism of Anomalous Post-Rift Subsidence in the Yinggehai Basin[J]. Earth Science, 33(3): 349-356. (in Chinese with English abstract)

[4]
郝天珧, 徐亚, 孙福利, 等, 2011. 南海共轭大陆边缘构造属性的综合地球物理研究[J]. 地球物理学报, 54(12): 3098-3116.

HAO TIANYAO, XU YA, SUN FULI, et al, 2011. Integrated geophysical research on the tectonic attribute of conjugate continental margin of South China Sea[J]. Chinese Jouranl of Geophysics, 54(12): 3098-3116. (in Chinese with English abstract)

[5]
焦养泉, 李思田, 解习农, 等, 1997. 多幕裂陷作用的表现形式——以珠江口盆地西部及其外围地区为例[J]. 石油实验地质, 19(3): 222-227.

JIAO YANGQUAN, LI SITIAN, XIE XINONG, et al, 1997. Manifestation of multistage episodic rifting-take western Pearl River Mouth Basin and its Peripheral area as an example[J]. Experimental Petroleum Geology, 19(3): 222-227. (in Chinese with English abstract)

[6]
雷超, 任建业, 佟殿君, 2013. 南海北部洋陆转换带盆地发育动力学机制[J]. 地球物理学报, 56(4): 1287-1299.

LEI CHAO, REN JIANYE, TONG DIANJUN, 2013. Geodynamics of the ocean-continent transition zone, northern margin of the South China Sea: Implications for the opening of the South China Sea[J]. Chinese Journal of Geophysics, 56(4): 1287-1299. (in Chinese with English abstract)

[7]
李昌年, 王方正, 钟称生, 2005. 广西北海涠洲岛(含斜阳岛)第四纪玄武质火山岩的地球化学性质及其源区特征[J]. 岩石矿物学杂志, 24(1): 1-11.

LI CHANGNIAN, WANG FANGZHENG, ZHONG CHENGSHENG, 2005. Geochemistry of Quaternary basaltic volcanic rocks of Weizhou island in Beihai City of Guangxi and a discussion on characteristics of their source[J]. Acta Petrologica Et Mineralogica, 24(1): 1-11. (in Chinese with English abstract)

[8]
李三忠, 索艳慧, 李玺瑶, 等, 2018. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应[J]. 科学通报, 63(16): 1550-1593.

LI SANZHONG, SUO YANHUI, LI XIYAO, et al, 2018. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone[J]. Chinese Science Bulletin, 63(16): 1550-1593. (in Chinese with English abstract)

[9]
林畅松, 张燕梅, 1999. 盆地的形成和充填过程模拟——以拉伸盆地为例[J]. 地学前缘, 6(B05): 139-146.

LIN CHANGSONG, ZHANG YANMEI, 1999. Basin formation and filling simulation: a case study on extensional basins[J]. Earth Science Frontiers, 6(B05): 139-146. (in Chinese with English abstract)

[10]
刘明辉, 梅廉夫, 杨亚娟, 等, 2015. 珠江口盆地惠州凹陷北部裂陷期与拗陷期沉降作用时空差异及主控因素[J]. 地球科学与环境学报, 37(2): 31-43.

LIU MINGHUI, MEI LIANFU, YANG YAJUAN, et al, 2015. Temporal-spatial differences of subsidence between syn- and post-rift stages in northern Huizhou sag of Pearl River Mouth Basin and their main control factors[J]. Journal of Earth Sciences and Environment, 37(2): 31-43. (in Chinese with English abstract)

[11]
刘少峰, 2009. 大陆边缘动力沉降及其深部构造作用控制[J]. 地质科学, 44(4): 1199-1212.

LIU SHAOFENG, 2009. Continental margin dynamic subsidence and its deep tectonic control[J]. Chinese Journal of Geology, 44(4): 1199-1212. (in Chinese with English abstract)

[12]
马明, 漆家福, 张远泽, 等, 2019. 珠江口盆地新生代沉降特征及其影响因素分析[J]. 中国地质, 46(2): 269-289.

MA MING, QI JIAFU, ZHANG YUANZE, et al, 2019. An analysis of subsidence characteristics and affecting factors in the Pearl River Mouth Basin in Cenozoic[J]. Geology in China, 46(2): 269-289. (in Chinese with English abstract)

[13]
毛云华, 赵中贤, 孙珍, 2020. 珠江口盆地西部陆缘伸展-减薄机制[J]. 地球科学, 45(5): 1622-1635.

MAO YUNHUA, ZHAO ZHONGXIAN, SUN ZHEN, 2020. Extensional thinning mechanism of the western continental margin of the Pearl River Mouth Basin[J]. Earth Science, 45(5): 1622-1635. (in Chinese with English abstract)

[14]
庞雄, 任建业, 郑金云, 等, 2018. 陆缘地壳强烈拆离薄化作用下的油气地质特征——以南海北部陆缘深水区白云凹陷为例[J]. 石油勘探与开发, 45(1): 27-39.

DOI

PANG XIONG, REN JIANGYE, ZHENG JINYUN, et al, 2018. Petroleum geology controlled by extensive detachment thinning of continental margin crust: A case study of Baiyun sag in the deep-water area of northern South China Sea[J]. Petroleum Exploration and Development, 45(1): 27-39. (in Chinese with English abstract)

[15]
任建业, 雷超, 2011. 莺歌海-琼东南盆地构造-地层格架及南海动力变形分区[J]. 地球物理学报, 54(12): 3303-3314.

REN JIANYE, LEI CHAO, 2011. Tectonic stratigraphic framework of Yinggehai-Qiongdongnan Basins and its implication for tectonic province division in South China Sea[J]. Chinese Journal of Geophysics, 54(12): 3303-3314. (in Chinese with English abstract)

[16]
任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析[J]. 地球物理学报, 61(12): 4901-4920.

REN JIANYE, PANG XIONG, YU PENG, et al, 2018. Characteristics and formation mechanism of deepwater and ultra-deepwater basins in the northern continental margin of the South China Sea[J]. Chinese Journal of Geophysics, 61(12): 4901-4920. (in Chinese with English abstract)

[17]
佟殿君, 任建业, 雷超, 等, 2009. 琼东南盆地深水区岩石圈伸展模式及其对裂后期沉降的控制[J]. 地球科学, 34(6): 963-974.

TONG DIANJUN, REN JIANYE, LEI CHAO, et al, 2009. Lithosphere stretching model of deep water in Qiongdongnan Basin, northern continental margin of South China Sea, and controlling of the post-rift subsidence[J]. Earth Science, 34(6): 963-974. (in Chinese with English abstract)

[18]
王贤觉, 吴明清, 梁德华, 等, 1984. 南海玄武岩的某些地球化学特征[J]. 地球化学, (4): 42-50.

WANG XIANJUE, WU MINGQING, LIANG DEHUA, et al, 1984. Some geochemical characteristics of basalts in the South China Sea[J]. Geochimica, (4): 42-50. (in Chinese with English abstract)

[19]
卫小冬, 阮爱国, 赵明辉, 2011. 穿越东沙隆起和潮汕坳陷的OBS广角地震剖面[J]. 地球物理学报, 54(12): 3325-3335.

WEI XIAODONG, RUAN AIGUO, ZHAO MINGHUI, 2011. A wide-angle OBS profile across Dongsha Uplift and Chaoshan Depression in the mid-northern South China Sea[J]. Chinese Journal of Geophysics, 54(12): 3325-3335. (in Chinese with English abstract)

[20]
吴能友, 曾维军, 宋海斌, 等, 2003. 南海区域构造沉降特征[J]. 海洋地质与第四纪地质, 23(1): 55-65.

WU NENGYOU, ZENG WEIJUN, SONG HAIBIN, et al, 2003. Tectonic subsidence of the South China Sea[J]. Marine Geology & Quaternary Geology, 23(1): 55-65. (in Chinese with English abstract)

[21]
吴时国, 孙启良, 吴拓宇, 等, 2009. 琼东南盆地深水区多边形断层的发现及其油气意义[J]. 石油学报, 30(1): 22-32.

DOI

WU SHIGUO, SUN QILIANG, WU TUOYU, et al, 2009. Polygonal fault and oil-gas accumulation in deep-water area of Qiongdongnan Basin[J]. Acta Petrolei Sinica, 30(1): 22-32. (in Chinese with English abstract)

DOI

[22]
徐义刚, 魏静娴, 邱华宁, 等, 2012. 用火山岩制约南海的形成演化:初步认识与研究设想[J]. 科学通报, 57(20): 1863-1878.

XU YIGANG, WEI JINGXIAN, QIU HUANING, et al, 2012. Opening and evolution of the South China Sea constrained by studies on volcanic rocks: Preliminary results and a research design[J]. Chinese Science Bulletin, 57(20): 1863-1878. (in Chinese with English abstract)

[23]
鄢全树, 石学法, 2007. 海南地幔柱与南海形成演化[J]. 高校地质学报, 13(2): 311-322.

YAN QUANSHU, SHI XUEFA, 2007. Hainan mantle plume and the formation and evolution of the South China Sea[J]. Geological Journal of China Universities, 13(2): 311-322. (in Chinese with English abstract)

[24]
鄢全树, 石学法, 王昆山, 等, 2008. 南海新生代碱性玄武岩主量、微量元素及Sr-Nd-Pb同位素研究[J]. 中国科学:地球科学, 38(1): 56-71.

YAN QUANSHU, SHI XUEFA, WANG KUNSHAN, et al, 2008. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea[J]. Science in China Series D: Earth Sciences, 38(1): 56-71. (in Chinese with English abstract)

[25]
杨军, 施小斌, 王振峰, 等, 2015. 琼东南盆地张裂期沉降亏损与裂后期快速沉降成因[J]. 海洋地质与第四纪地质, 35(1): 81-90.

YANG JUN, SHI XIAOBIN, WANG ZHENGFENG, et al, 2015. Origin of syn-rift subsidence deficit and rapid post-rift subsidence in Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 35(1): 81-90. (in Chinese with English abstract)

[26]
易海, 张莉, 林珍, 2012. 南海北部中生代构造格局与盆地发育特征[J]. 石油实验地质, 34(4): 388-394.

YI HAI, ZHANG LI, LIN ZHEN, 2012. Mesozoic tectonic framework and basin distribution characteristics of northern margin of South China Sea[J]. Petroleum Geology & Experiment, 34(4): 388-394. (in Chinese with English abstract)

[27]
袁玉松, 杨树春, 胡圣标, 等, 2008. 琼东南盆地构造沉降史及其主控因素[J]. 地球物理学报, 51(2): 376-383.

YUAN YUSONG, YANG SHUCHUN, HU SHENGBIAO, et al, 2008. Tectonic subsidence of Qiongdongnan Basin and its main control factors[J]. Chinese Journal of Geophysics, 51(2): 376-383. (in Chinese with English abstract)

[28]
张云帆, 孙珍, 周蒂, 等, 2007. 南海北部陆缘新生代地壳减薄特征及其动力学意义[J]. 中国科学, 37(12): 1609-1616.

ZHANG YUNFAN, SUN ZHEN, ZHOU DI, et al, 2007. The crustal thinning on the northern margin of the South China Sea in Cenozoic and a discussion on its dynamic significance[J]. Science in China Series D: Earth Sciences, 37(12): 1609-1616. (in Chinese with English abstract)

[29]
赵中贤, 孙珍, 谢辉, 等, 2011. 白云深水区新生代沉降及岩石圈伸展变形[J]. 地球物理学报, 54(12): 3336-3343.

ZHAO ZHONGXIAN, SUN ZHEN, XIE HUI, et al, 2011. Baiyun deepwater cenozoic subsidence and lithospheric stretching deformation[J]. Chinese Journal of Geophysics, 54(12): 3336-3343. (in Chinese with English abstract)

[30]
赵中贤, 周蒂, 廖杰, 2009. 珠江口盆地第三纪古地理及沉积演化[J]. 热带海洋学报, 28(6): 52-60.

DOI

ZHAO ZHONGXIAN, ZHOU DI, LIAO JIE, 2009. Tertiary paleogeography and depositional evolution in the Pearl River Mouth Basin of the northern South China Sea[J]. Journal of Tropical Oceanography, 28(6): 52-60. (in Chinese with English abstract)

[31]
赵中贤, 周蒂, 廖杰, 等, 2010. 珠江口盆地陆架区岩石圈伸展模拟及裂后沉降分析[J]. 地质学报, 84(8): 1135-1145.

ZHAO ZHONGXIAN, ZHOU DI, LIAO JIE, et al, 2010. Lithospheric stretching Modeling of the continental shelf in the Pearl River Mouth Basin and analysis of post-breakup subsidence[J]. Acta Geologica Sinica, 84(8): 1135-1145. (in Chinese with English abstract)

[32]
邹和平, 李平鲁, 饶春涛, 1995. 珠江口盆地新生代火山岩地球化学特征及其动力学意义[J]. 地球化学, 24: 33-45.

ZOU HEPING, LI PINGLU, RAO CHUNTAO, 1995. Geochemistry of Cenozoic volcanic rocks in Zhu Jiangkou Basin and its geodynamic significance[J]. Geochimica, 24: 33-45. (in Chinese with English abstract)

[33]
BRIAIS A, PATRIAT P, TAPPONNIER P, 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research Solid Earth, 98(B4): 6299-6328.

[34]
BRUNE S, WILLIAMS S E, BUTTERWORTH N P, et al, 2016. Abrupt plate accelerations shape rifted continental margins[J]. Nature, 536(7615): 201-204.

DOI

[35]
BUCK W R, 1985. When Does Small-Scale Convection Begin beneath Oceanic Lithosphere?[J]. Nature, 313(6005): 775-777.

DOI

[36]
BUCK W R, 1986. Small-scale convection induced by passive rifting: the cause for uplift of rift shoulders[J]. Earth and Planetary Science Letters, 77(3-4): 362-372.

DOI

[37]
CLIFT P D, BRUNE S, QUINTEROS J, 2015. Climate changes control offshore crustal structure at South China Sea continental margin[J]. Earth and Planetary Science Letters, 420: 66-72.

DOI

[38]
CLOETINGH S, GRADSTEIN F M, KOOI H, et al, 1990. Plate reorganization: a cause of rapid late Neogene subsidence and sedimentation around the North Atlantic?[J]. Journal of the Geological Society, 147: 495-506.

DOI

[39]
DAVIS M, KUSZNIR N, 2004. Depth-dependent lithospheric stretching at rifted continental margins[J]. Proceedings of national science foundation rifted margins theoretical institute. New York: Columbia University Press: 92-137.

[40]
DING WEIWEI, SUN ZHEN, MOHN G, et al, 2020. Lateral evolution of the rift-to-drift transition in the South China Sea: evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results[J]. Earth and Planetary Science Letters, 531: 115932.

DOI

[41]
DRISCOLL N W, KARNER G D, 1998. Lower crustal extension across the Northern Carnarvon basin, Australia: Evidence for an eastward dipping detachment[J]. Journal of Geophysical Research, 103(B3): 4975-4991.

DOI

[42]
DUPRÉ S, BERTOTTI G, CLOETINGH S, 2007. Tectonic history along the South Gabon Basin: Anomalous early post-rift subsidence[J]. Marine and petroleum geology, 24(3): 151-172.

DOI

[43]
FRANKE D, 2013. Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins[J]. Marine and Petroleum Geology, 43: 63-87.

DOI

[44]
FRANKE D, SAVVA D, PUBELLIER M, et al, 2014. The final rifting evolution in the South China Sea[J]. Marine and Petroleum Geology, 58: 704-720.

DOI

[45]
GAO JINWEI, WU SHIGUO, MCINTOSH K, et al, 2016. Crustal structure and extension mode in the northwestern margin of the South China Sea[J]. Geochemistry Geophysics Geosystems, 17(6): 2143-2167.

DOI

[46]
GEOFFROY L, 2005. Volcanic passive margins[J]. Comptes Rendus Geoscience, 337(16): 1395-1408.

DOI

[47]
HAYES D E, NISSEN S S, 2005. The South China Sea margins: Implications for rifting contrasts[J]. Earth and Planetary Science Letters, 237(3-4): 601-616.

DOI

[48]
HE MIN, ZHONG GUANGFA, LIU XUEFENG, et al, 2017. Rapid post-rift tectonic subsidence events in the Pearl River Mouth Basin, northern South China Sea margin[J]. Journal of Asian Earth Sciences, 147: 271-283.

DOI

[49]
HOANG N, FLOWER M, 1998. Petrogenesis of Cenozoic basalts from Vietnam: Implication for Origins of a 'Diffuse Igneous Province'[J]. Journal of Petrology, 39(3): 369-395.

DOI

[50]
HUISMANS R, BEAUMONT C, 2011. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins[J]. Nature, 473(7345): 74-78.

DOI

[51]
JARVIS G T, MCKENZIE D P, 1980. Sedimentary basin formation with finite extension rates[J]. Earth and Planetary Science Letters, 48(1): 42-52.

DOI

[52]
JIAN ZHIMIN, JIN HAIYAN, KAMINSKI M A, et al, 2019. Discovery of the marine Eocene in the northern South China Sea[J]. National Science Review, 6(5): 881-885.

DOI

[53]
KEEN C E, 1985. The dynamics of rifting: deformation of the lithosphere by active and passive driving forces[J]. Geophysical Journal of the Royal Astronomical Society, 80(1): 95-120.

[54]
KUDRASS H R, WIEDICKE M, CEPEK P, et al, 1986. Mesozoic and Cainozoic rocks dredged from the South China Sea (Reed Bank area) and Sulu Sea and their significance for plate-tectonic reconstructions[J]. Marine and Petroleum Geology, 3(1): 19-30.

DOI

[55]
LARSEN H C, MOHN G, NIRRENGARTEN M, et al, 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. Nature Geoscience, 11(10): 782-789.

DOI

[56]
LEI CHAO, ALVES T M, REN JIANYE, et al, 2020. Rift Structure and Sediment Infill of Hyperextended Continental Crust: Insights From 3D Seismic and Well Data (Xisha Trough, South China Sea)[J]. Journal of Geophysical Research-Solid Earth, 125(5), e2019JB018610.

[57]
LEI CHAO, REN JIANYE, 2016. Hyper-extended rift systems in the Xisha Trough, northwestern South China Sea: Implications for extreme crustal thinning ahead of a propagating ocean[J]. Marine and Petroleum Geology, 77: 846-864.

DOI

[58]
LESTER R, VAN AVENDONK H J A, MCINTOSH K, et al, 2014. Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging[J]. Journal of Geophysical Research: Solid Earth, 119(3): 2305-2323.

DOI

[59]
LI CHUN-FENG, LIN JIAN, KULHANEK D, et al, 2015a. Expedition 349 summary.

[60]
LI CHUNFENG, LIN JIAN, KULHANEK D K, et al, 2015b. Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics: College Station, TX (International Ocean Discovery Program). http://dx.doi.org/10.14379/iodp.proc.349.2015.

[61]
LI CHUNFENG, SONG TAORAN, 2012a. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin[J]. Chinese Science Bulletin, 57(24): 3165-3181.

DOI

[62]
LI JIABIAO, DING WEIWEI, LIN JIAN, et al, 2021. Dynamic processes of the curved subduction system in Southeast Asia: a review and future perspective[J]. Earth-Science Reviews, 217: 103647.

DOI

[63]
LI JIABIAO, DING WEIWEI, WU ZIYIN, et al, 2012b. The propagation of seafloor spreading in the southwestern subbasin, South China Sea[J]. Chinese Science Bulletin, 57(24): 3182-3191.

DOI

[64]
LIAO JIE, ZHOU DI, ZHAO ZHONGXIAN, et al, 2011. Numerical modeling of the anomalous post-rift subsidence in the Baiyun Sag, Pearl River Mouth Basin[J]. SCIENCE CHINA Earth Science(54): 1156-1167.

[65]
LIN A T, WATTS A B, HESSELBO S P, 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region[J]. Basin Research, 15(4): 453-478.

DOI

[66]
LITHGOW-BERTELLONI C, GURNIS M, 1997. Cenozoic subsidence and uplift of continents from time-varying dynamic topography[J]. Geology, 25(8): 735-738.

DOI

[67]
LITHGOW-BERTELLONI C, SILVER P G, 1998. Dynamic topography, plate driving forces and the African superswell[J]. Nature, 395: 269-271.

DOI

[68]
MCKENZIE D, 1978. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters, 40(1): 25-32.

DOI

[69]
NADIN P A, KUSZNIR N J, CHEADLE M J, 1997. Early Tertiary plume uplift of the North Sea and Faeroe-Shetland Basins[J]. Earth and Planetary Science Letters, 148(1-2): 109-127.

DOI

[70]
NISSEN S S, HAYES D E, 1995. Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea[J]. Journal of Geophysical Research, 100(B11): 22477-22483.

[71]
PANG XIONG, REN JIANYE, ZHENG JINYUN, et al, 2018. Petroleum geology controlled by extensive detachment thinning of continental margin crust: A case study of Baiyun sag in the deep-water area of northern South China Sea[J]. Petroleum Exploration and Development, 45(1): 29-42.

DOI

[72]
PICKUP S L B, WHITMARSH R B, FOWLER C M R, et al, 1996. Insight into the nature of the ocean-continent transition off West Iberia from a deep multichannel seismic reflection profile[J]. Geology, 24(12): 1079-1082.

DOI

[73]
PRAEG D, STOKER M S, SHANNON P M, et al, 2005. Episodic Cenozoic tectonism and the development of the NW European 'passive' continental margin[J]. Marine and Petroleum Geology, 22(9-10): 1007-1030.

DOI

[74]
QIU XUELIN, YE SANYU, WU SHIMIN, et al, 2001. Crustal structure across the Xisha Trough, northwestern South China Sea[J]. Tectonophysics, 341(1-4): 179-193.

DOI

[75]
SCLATER J G, CHRISTIE P A F, 1980. Continental stretching: An explanation of the Post-Mid-Cretaceous subsidence of the central North Sea Basin[J]. Journal of Geophysical Research, 85(B7): 3711-3739.

DOI

[76]
SHI HESHENG, LI CHUNFENG, 2012. Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea[J]. International Geology Review, 54(15): 1801-1828.

DOI

[77]
SHI XIAOBIN, BUROV E, LEROY S, et al, 2005. Intrusion and its implication for subsidence: A case from the Baiyun Sag, on the northern margin of the South China Sea[J]. Tectonophysics, 407(1-2): 117-134.

DOI

[78]
SHI XIAOBIN, JIANG HAIYAN, YANG JUN, et al, 2017. Models of the rapid post-rift subsidence in the eastern Qiongdongnan Basin, South China Sea: implications for the development of the deep thermal anomaly[J]. Basin Research, 29(3): 340-362.

DOI

[79]
SU MING, XIE XI-NONG, JIANG TAO, et al, 2011. Characteristics of S40 Boundary and its significance in Qiongdongnan Basin, Northern Continental Margin of South China Sea[J]. Earth Science-Journal of China Univeristy of Geosciences, 36(5): 886-894.

[80]
SUN XIAOMENG, ZHANG XUQING, ZHANG GONGCHENG, et al, 2014a. Texture and tectonic attribute of Cenozoic basin basement in the northern South China Sea[J]. Science China Earth Sciences, 57(6): 1199-1211.

DOI

[81]
SUN Z, JIAN Z, STOCK J M, et al, 2018. South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368:College Station, TX (International Ocean Discovery Program).

[82]
SUN ZHEN, LIN JIAN, QIU NING, et al, 2019. The role of magmatism in the thinning and breakup of the South China Sea continental margin: special topic: the South China Sea ocean drilling[J]. National Science Review, 6(5): 871-876.

DOI

[83]
SUN ZHEN, XU ZIYING, SUN LONGTAO, et al, 2014b. The mechanism of post-rift fault activities in Baiyun sag, Pearl River Mouth basin[J]. Journal of Asian Earth Sciences, 89: 76-87.

DOI

[84]
SUN ZHEN, ZHONG ZHIHONG, KEEP M, et al, 2009. 3D analogue modeling of the South China Sea: a discussion on breakup pattern[J]. Journal of Asian Earth Sciences, 34(4): 544-556.

DOI

[85]
TAYLOR B, HAYES D E, 1983. Origin and History of the South China Sea basin[J]. In Hayes DE (ed) The Tectonic and Geologic Evolution of SouthEastern Asia Seas and Islands, Part 2, Chapter 2. American Geophysics Union, Washington, DC, pp 23-56.

[86]
WANG JIAHAO, PANG XIONG, LIU BAOJUN, et al, 2018. The Baiyun and Liwan Sags: Two supradetachment basins on the passive continental margin of the northern South China Sea[J]. Marine & Petroleum Geology, 95: 206-218.

[87]
WANG PINXIAN, LI QIANYU, 2009. The South China Sea Paleoceanography and Sedimentology, 13:Springer, Berlin.

[88]
WANG P, PRELL W I, BLUM P, 2000. Proceedings of the Ocean Drilling Program, Initial Reports, 184.

[89]
WANG XUAN-CE, LI ZHENG-XIANG, LI XIAN-HUA, et al, 2012. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: a Consequence of a Young Thermal Mantle Plume close to Subduction Zones?[J]. Journal of Petrology, 53(1): 177-233.

DOI

[90]
WHEELER P, WHITE N, 2000. Quest for dynamic topography: Observations from Southeast Asia[J]. Geology, 28(11): 963-966.

DOI

[91]
WHEELER P, WHITE N, 2002. Measuring dynamic topography: An analysis of Southeast Asia[J]. Tectonics, 21(5): 4.1-4.26.

[92]
XIE HUI, ZHOU DI, LI YUANPING, et al, 2014. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Tectonophysics, 615-616: 182-198.

[93]
XIE HUI, ZHOU DI, SHI HONGCAI, et al, 2021. Lithospheric stretching-style variations and anomalous post-rift subsidence in the deep water sub-basins of the Pearl River Mouth Basin, northern South China Sea[J]. Marine and Petroleum Geology, 131: 105140.

DOI

[94]
XIE XINHONG, MÜLLER R D, LI SITIAN, et al, 2006. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography[J]. Marine and petroleum geology, 23(7): 745-765.

DOI

[95]
XIE XINONG, MÜLLER R D, REN JIANYE, et al, 2008. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 247(3-4): 129-144.

DOI

[96]
XIE XINONG, REN JIANYE, PANG XIONG, et al, 2019. Stratigraphic architectures and associated unconformities of Pearl River Mouth basin during rifting and lithospheric breakup of the South China Sea[J]. Marine Geophysical Research, 40: 129-144.

DOI

[97]
YAN PIN, ZHOU DI, LIU ZHAOSHU, 2001. A crustal structure profile across the northern continental margin of the South China Sea[J]. Tectonophysics, 338(1): 1-21.

DOI

[98]
YANG FAN, HUANG XIAOLONG, XU YIGANG, et al, 2019. Plume-ridge interaction in the South China Sea: Thermometric evidence from Hole U1431E of IODP Expedition 349[J]. Lithos, 324-325: 466-478.

[99]
YE QING, MEI LIANFU, SHI HESHENG, et al, 2018. The Late Cretaceous tectonic evolution of the South China Sea area: an overview, and new perspectives from 3D seismic reflection data[J]. Earth-Science Reviews, 187: 186-204.

DOI

[100]
YE QING, MEI LIANFU, SHI HESHENG, et al, 2020. The Influence of Pre-existing Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern South China Sea Rifted Margin[J]. Tectonics, 39(3): E2019TC005845.

[101]
YIN XINYI, REN JIANYE, LEI CHAO, et al, 2011. Postrift rapid subsidence characters in Qiongdongnan Basin, South China Sea[J]. Journal of Earth Science, 22(2): 273-279.

DOI

[102]
ZHAO YANGHUI, DING WEIWEI, YIN SHAORU, et al, 2019. Asymmetric post-spreading magmatism in the South China Sea: based on the quantification of the volume and its spatiotemporal distribution of the seamounts[J]. International Geology Review, 62(7-8): 955-969.

DOI

[103]
ZHAO YANGHUI, TONG DIANJUN, SONG YING, et al, 2016. Seismic reflection characteristics and evolution of intrusions in the Qiongdongnan Basin: Implications for the rifting of the South China Sea[J]. Journal of Earth Science, 27(4): 642-653.

DOI

[104]
ZHAO ZHONG-XIAN, 2021. The deep mantle upwelling beneath the northwestern South China Sea: Insights from the time-varying residual subsidence in the Qiongdongnan Basin[J]. Geoscience Frontiers, 12(6): 101246.

DOI

[105]
ZHAO ZHONGXIAN, SUN ZHEN, HUANG HAIBIAO, et al, 2018a. The Red River sediment budget in the Yinggehai and Qiongdongnan basins, northwestern South China Sea, and its tectonic implications[J]. International Geology Review, 62(7-8): 1019-1035.

DOI

[106]
ZHAO ZHONGXIAN, SUN ZHEN, LIU JIANBAO, et al, 2018b. The continental extension discrepancy and anomalous subsidence pattern in the western Qiongdongnan Basin, South China Sea[J]. Earth and Planetary Science Letters, 501: 180-191.

DOI

[107]
ZHAO ZHONGXIAN, SUN ZHEN, QIU NING, et al, 2022. The paleo-lithospheric structure and rifting-magmatic processes of the northern South China Sea passive margin[J]. Gondwana Research, in press.

[108]
ZHAO ZHONGXIAN, SUN ZHEN, SUN LONGTAO, et al, 2018c. Cenozoic tectonic subsidence in the Qiongdongnan Basin, northern South China Sea[J]. Basin Research, 30(s1): 269-288.

DOI

[109]
ZHAO ZHONGXIAN, SUN ZHEN, WANG ZHENFENG, et al, 2013. The dynamic mechanism of post-rift accelerated subsidence in Qiongdongnan Basin, northern South China Sea[J]. Marine Geophysical Research, 34(3-4): 295-308.

DOI

[110]
ZHAO ZHONGXIAN, SUN ZHEN, WANG ZHENFENG, et al, 2015a. The mechanics of continental extension in Qiongdongnan Basin, northern South China Sea[J]. Marine Geophysical Research, 36(2-3): 197-210.

DOI

[111]
ZHAO ZHONGXIAN, SUN ZHEN, WANG ZHENFENG, et al, 2015b. The high resolution sedimentary filling in Qiongdongnan Basin, Northern South China Sea[J]. Marine Geology, 361: 11-24.

DOI

[112]
ZHOU ZHICHAO, MEI LIANFU, LIU JUN, et al, 2018. Continentward-dipping detachment fault system and asymmetric rift structure of the Baiyun Sag, northern South China Sea[J]. Tectonophysics, 726: 121-136.

DOI

文章导航

/