南海西边界流区域涡旋特征及两类冬季环流对涡致热输运的调制
刘钦燕(1976—), 女, 山东省青岛市人, 研究员, 从事环流动力过程及海气相互作用相关研究。email: |
Copy editor: 林强
收稿日期: 2022-06-22
修回日期: 2022-08-25
网络出版日期: 2022-09-07
基金资助
科技部资源调查专项课题(2017FY201402)
国家自然科学基金面上项目(41576012)
国家自然科学基金面上项目(41876017)
国家自然科学基金面上项目(42176027)
The characteristics of eddy in western boundary current of South China Sea and its relationship with winter circulation
Copy editor: LIN Qiang
Received date: 2022-06-22
Revised date: 2022-08-25
Online published: 2022-09-07
Supported by
Science and Technology Basic Resources Investigation Program of China(2017FY201402)
National Natural Science Foundation of China(41576012)
National Natural Science Foundation of China(41876017)
National Natural Science Foundation of China(42176027)
本文基于观测数据和模式产品, 探讨了南海西边界流(South China Sea western boundary current, SCSwbc)区域海洋涡旋的统计特征、涡致热输运并重点探讨了两类冬季环流形态及其风场分布对它们的影响。结果表明研究区域的涡旋气候态上存在旋转速度很强, 半径较大, 振幅略高于平均值的涡旋统计特征, 其中气旋式涡旋(cyclonic eddy, CE)的占比约为56.8%。并且涡旋的生成和消亡主要发生在冬/春季, 而涡旋的振幅、半径和旋转速度在夏/秋季发展到顶峰。年际时间尺度上, 年平均经向风应力与反气旋式涡旋(anticyclonic eddy, AE)的振幅、半径、旋转速度和消亡均有较好的相关性, 但与CE特征的相关性并不好。“O” 型冬季环流模态下, 风场和南海西边界流显著减弱, 冬季环流在越南沿岸发生向东分支。涡旋在“O”模态下吸收平均流能量迅速发展, 在越南沿岸东部地区产生了强的涡致热输运(eddy-induced heat transport, EHT)。同时, 涡旋内部旋转速度减小且反气旋式涡旋个数减少; “U” 型冬季环流模态下, 情况则相反。
刘钦燕 , 李汶莲 , 石睿 , 陈举 , 李春晖 , 谢强 . 南海西边界流区域涡旋特征及两类冬季环流对涡致热输运的调制[J]. 热带海洋学报, 2023 , 42(3) : 52 -66 . DOI: 10.11978/2022141
Based on the satellite observations and model outputs, the statistical characteristics of eddy, eddy-induced heat transport and the influences from two winter circulation patterns and wind stress are discussed in this study. The results show that the climatological mean of eddy statistics in the study area has characteristics of strong rotation speed, large radius and amplitude that are slightly higher than the average in the whole SCS, among which cyclonic eddy (CE) accounts for 56.8%. The formation and extinction of eddies mainly occur in winter/spring, while the amplitude, radius and rotation speed of eddy reach their peak values in summer/autumn. On the interannual time scale, the annual mean meridional wind stress has a good correlation with anticyclonic eddy (AE) including its amplitude, radius, rotation speed and extinction, but the correlations with CE are weak. In the “O” pattern, the western boundary current and winter wind stress are significantly weakened, and the easterly branches of winter circulation occur along the coast of Vietnam. By absorbing mean flow energy, the eddy in this study area developed rapidly in “O” pattern, generating strong eddy-induced heat transport (EHT) in the east of the Vietnam coast. In the meantime, the rotation speed of eddy and the number of AE decrease. The above situation is opposite under the “U” winter circulation pattern.
图1 两类南海冬季环流示意图改自Zu等(2019)。红线表示“U”模态, 蓝线表示“O”模态; 灰色箭头分别表示吕宋海峡(LST)、民都洛海峡(MST)和卡里马塔海峡(KST)的运输, 它们在“U”/“O”年份的值分别用红色和蓝色标记。红色虚线方框为本文重点研究海域 Fig. 1 Schematic diagram of two types of winter circulation in the SCS. The red line represents "U" pattern, the blue line represents "O" pattern, and the grey arrows indicate the transport of the Luzon Strait (LST), Mindoro Strait (MST), and Karimata Strait (KST). The red dotted box represents the research area. Modified from Zu et al (2019) |
图2 由OFES数据(a、c)以及AVISO数据(b、d)绘制的两类南海冬季上层流场的水平分布情况a、c为由OFES模式数据计算的上层241m平均后的流场分布, 其中a为 “O”模态合成年分布, c为 “U”模态合成年分布。b、d为AVISO数据计算结果。颜色部分代表流速, 矢量箭头代表流场, 红色箭头代表西边界流的运动情况 Fig. 2 The horizontal distribution of upper layer current from OFES outputs (a, c) and geostrophic current from AVISO data (b, d). (a) and (c) are the horizontal distribution of the upper layer calculated by OFES data(averaged in upper 241m), where (a)/(c) represents the distribution of "O"/"U" years. (b) and (d) are the same as (a) and (c) but for AVISO data. The gray arrow represents the velocity vector, the color shedding represents the absolute velocity, and the red bold arrow represents the movement of the western boundary current |
表1 SCS(South China Sea)地区以及SCSwbc区域涡旋统计特征Tab. 1 Statistical characteristics of eddy in SCS and the SCSwbc region |
涡旋特征 | CE | AE | All | |||
---|---|---|---|---|---|---|
WSCS | SCS | WSCS | SCS | WSCS | SCS | |
个数 | 16046 | 67156 | 12502 | 60861 | 28548 | 128017 |
生成 | 289 | 1217 | 202 | 1058 | 491 | 2275 |
消亡 | 319 | 1306 | 281 | 1204 | 600 | 2510 |
振幅/m | 0.039 | 0.028 | 0.032 | 0.027 | 0.036 | 0.028 |
半径/km | 84.87 | 68.90 | 80.81 | 70.01 | 82.84 | 69.46 |
旋转速度/(m·s-1) | 0.278 | 0.203 | 0.240 | 0.191 | 0.259 | 0.197 |
注: SCS代表整个南海区域(4°N—22°N, 108°E—121°E), WSCS代表SCSwbc区域(9°N—16°N, 108°E—114°E) |
图3 南海涡旋各项基本特征的气候态水平分布a、c、e为反气旋式涡旋; b、d、f为气旋式涡旋。图片中红色虚线框为研究区域, 黑色实线为400m等深线 Fig. 3 Horizontal distribution of climatology statistic features of eddy in South China Sea. (a, c, e) AE; (b, d, f) CE. The red dotted box is the study area, and the solid black lines represent the isobath of 400m |
图5 涡旋各项基本特征在四个季节的柱状图分布a. 涡旋个数; b. 涡旋生成个数; c. 涡旋消亡个数; d. 涡旋振幅; e. 涡旋内部旋转速度; f. 涡旋半径。绿色柱代表春天(2—4月), 橙色柱代表夏天(5—7月), 黄色柱代表秋天(8—10月), 蓝色柱代表冬天(11—1月) Fig. 5 The histogram distribution of the statistical features of eddy in four seasons. a. the number of eddy occurrence; b. the number of eddy genesis; c. the number of eddy dissipation; d. amplitude; e. rotation speed; f. radius. The green column represents spring (February to April), the orange column represents summer (May to July), the yellow column represents autumn (August to October), and the blue column represents winter (November to January) |
图6 涡旋各项基本特征在冬季的水平分布a. AE振幅; c. AE半径; e. AE旋转速度; b、d、f同a、c、e, 但为CE。黑色实线为400m等深线 Fig. 6 Horizontal distribution of eddy’s statistical features in winter. (a) amplitude of AE; (c) radius; (e) rotation speed of AE; (b, d, f) are the same as (a, c, e) but for CE. The solid black lines represent the isobath of 400m |
表2 两类冬季环流形态下SCSwbc区域涡旋统计特征Tab. 2 Statistical characteristics of eddy in the SCSwbc area in “U”/“O” patterns |
涡旋统计特征 | CE | AE | 全部 | |||
---|---|---|---|---|---|---|
O | U | O | U | O | U | |
个数 | 875 | 874 | 686 | 912 | 781 | 893 |
生成 | 21 | 19 | 13 | 15 | 17 | 17 |
消亡 | 21 | 17 | 14 | 17 | 18 | 17 |
振幅/m | 0.028 | 0.029 | 0.026 | 0.025 | 0.027 | 0.027 |
半径/km | 75.26 | 74.00 | 75.03 | 72.32 | 75.14 | 73.16 |
旋转速度/(m·s-1) | 0.233 | 0.244 | 0.192 | 0.203 | 0.212 | 0.224 |
图8 两组数据计算的涡致热输运的水平气候态分布情况由月平均Argo数据计算(2004—2017年)的MEHT(a, 向极地为正)、ZEHT(b, 向东为正)和EHT(c); d—f同a—c, 但为由OFES模式产品提供的月平均数据(1993—2017年)计算。图中的红色虚线框为研究区域(SCSwbc区) Fig. 8 The horizontal distribution of eddy induced heat transport based on two datasets. (a) MEHT(poleward is positive); (b) ZEHT(east is positive); (c) EHT calculated from monthly mean Argo data (2004-2017); (d-f) are the same as (a-c) but calculated from the monthly average data (1993-2017) provided by OFES products. The red dotted box is the study area |
图9 由两组数据计算的MEHT/ZEHT在“O”模态和“U”模态的水平分布以及差异a—f为Argo数据计算结果: a为纬向涡致热输运(ZEHT, 向东为正)在“O”模态合成年份的分布情况; b为ZEHT在“U”模态合成年份的分布情况; c为二者差异(“O”减去“U”); d—f同a—c, 但为经向涡致热输运(MEHT, 向极地为正)的分布; g—l同a—f, 但为OFES数据计算结果 Fig. 9 Horizontal distribution and differences of MEHT/ZEHT in “O” and “U” pattern based on two datasets. (a-f) are results calculated by Argo data: (a) distribution of ZEHT(poleward is positive) in “O” years; (b) distribution of MEHT in “U” years; (c) difference between “O” and “U” pattern (“O” minus “U”); (d-f) are the same as (a-c) but for MEHT; (g-l) are the same as (a-f) but calculated from the monthly average data (1993-2017) provided by OFES products |
图11 由Argo数据(a—c)和OFES数据(d—f)计算的EHT和OFES提供的风场数据和风应力旋度 (g—i)在“O”模态和“U”模态的水平分布及差异a、d、g为“O”模态合成年份的分布情况; b、e、h为“U”模态合成年份分布情况; c、f、i为二者差异(“O”减去“U”)。a、b、d、e中的箭头代表“O”/“U”模态下南海西边界流的情况; g、h中的蓝色箭头代表风场强度大小 Fig. 11 The horizontal distribution of EHT based on Argo (a-c) and OFES outputs (d-f). The third rows show horizontal distributions of the wind stress and wind stress curl in two patterns based on OFES outputs. (a, d, g) Distribution of “O” pattern; (b, e, h) distribution of “U” pattern; (c) the difference between “O” and “U” pattern (“O” minus “U”). The blue/red arrows in (a, b, d, e) represent the western boundary current of South China Sea in “O”/“U” pattern. The blue arrows in (g) and (h) represent the intensity of wind field in two patterns |
[1] |
林鹏飞, 王凡, 陈永利, 等, 2007. 南海中尺度涡的时空变化规律Ⅰ. 统计特征分析[J]. 海洋学报(中文版), 2007(3): 14-22.
|
[2] |
王东晓, 王强, 蔡树群, 等, 2019. 南海中深层动力格局与演变机制研究进展[J]. 中国科学: 地球科学, 49(12): 1919-1932. (in Chinese)
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
/
〈 | 〉 |