红海与加利福尼亚湾初始扩张系统的热状态差异
徐柳娜(1996—), 女, 山东省烟台市人, 硕士研究生, 从事海洋地球物理研究。email: |
Copy editor: 林强
收稿日期: 2023-03-10
修回日期: 2023-04-28
网络出版日期: 2023-05-08
基金资助
国家自然科学基金项目(91858213)
国家自然科学基金项目(42176055)
海南省自然科学基金(421CXTD441)
舟山市校合作项目(2019C81058)
Contrasting thermal states of the initial spreading systems between the Red Sea and the Gulf of California
Copy editor: LIN Qiang
Received date: 2023-03-10
Revised date: 2023-04-28
Online published: 2023-05-08
Supported by
National Natural Science Foundation of China(91858213)
National Natural Science Foundation of China(42176055)
Natural Science Foundation of Hainan Province, China(421CXTD441)
Zhejiang University Cooperation Project with Zhoushan city(2019C81058)
红海与加利福尼亚湾同处于由大陆裂谷向初始海底扩张的过渡阶段, 但具有显著不同的构造背景与演化特征。本文基于磁异常数据, 利用基于傅里叶变换和小波变换的质心法, 计算得到了红海和加利福尼亚湾的居里面深度, 对比发现二者热状态存在显著差异, 不同方法的计算结果均显示加利福尼亚湾的居里面明显深于红海的居里面。红海扩张中心相对连续, 岩浆活动较为活跃, 而加利福尼亚湾扩张中心区域广泛发育了错开扩张脊的转换断层, 并且扩张中心处热液活动强烈, 加速了该区域的热对流和热损耗。此外, 扩张速率与热状态和热液活动之间存在着明显的耦合关系。加利福尼亚湾的扩张速率是红海的两倍多, 较快的扩张速率与热液活动正相关, 较强的热液活动加速热损耗而加深居里面, 也是引起加利福尼亚湾居里面比红海居里面深的原因之一。
徐柳娜 , 李春峰 , 黄亮 , 朱塽 , 尹义红 . 红海与加利福尼亚湾初始扩张系统的热状态差异[J]. 热带海洋学报, 2023 , 42(6) : 74 -88 . DOI: 10.11978/2023032
Although both the Red Sea and the Gulf of California are in the transitional stage from continental rifting to initial seafloor spreading, their tectonic backgrounds and evolutionary features are vastly different. To investigate their geothermal differences, curie-point depths in the Red Sea and the Gulf of California are estimated from magnetic anomalies using the centroid method based on both Fourier and wavelet transform. Our results reveal significant differences in the thermal states between the Red Sea and the Gulf of California. Curie depths in the Gulf of California are evidently deeper than those in the Red Sea. The spreading center of the Red Sea is relatively continuous and has active magmatic activity, whereas the spreading center of the Gulf of California is staggered by extensively developed transform faults and has strong localized hydrothermal activity that accelerates the thermal convection and loss of heat in this region. In addition, the spreading rate is highly coupled with the thermal state and hydrothermal activity in the spreading center. The spreading rate in the Gulf of California more than twice that of the Red Sea, further supporting stronger hydrothermal activity and deeper Curie depths in the Gulf of California than in the Red Sea.
图1 红海区域地形图(a)及加利福尼亚湾区域地形图(b)a中黑色虚线表示红海分段; 红色实线表示红海裂谷轴部; 黑色实线表示断层; 蓝色箭头表示板块相对运动方向。b中红色实线表示加利福尼亚湾南部的扩张段和加利福尼亚湾北部复杂的拉分盆地; 裂谷内黑色实线表示转换断层; 蓝色箭头表示板块相对运动方向。WB: Wagner盆地; CB: Consag盆地; DB: Delfin盆地; TB: Tiburon盆地; AB: Alarcon盆地; PB: Pescadero盆地; FB: Farallon盆地; CB: Carmen盆地; GB: Guaymas盆地。水深数据来自GEBCO Compilation Group (2021)。断层数据来自Styron等(2020) Fig. 1 Regional topographic map of the Red Sea (a) and regional topographic map of the Gulf of California (b). (a) The black dashed line indicates the segment boundaries of the Red Sea; red solid line indicates the Red Sea rift axis; solid black line indicates fault; blue arrows indicate directions of relative plate motion. (b) The red solid line indicates the spreading segment in the southern Gulf of California and the complex pull-apart basin in the northern Gulf of California; solid black line within the rift valley indicates transform fault; blue arrows indicate directions of relative plate motion. WB: Wagner Basin; CB: Consag Basin; DB: Delfin Basin; TB: Tiburon Basin; AB: Alarcon Basin; PB: Pescadero Basin; FB: Farallon Basin; CB: Carmen Basin; GB: Guaymas Basin. Bathymetric data are from GEBCO Compilation Group (2021). Fault data are from Styron et al (2020) |
图3 磁异常径向平均振幅谱以及线性拟合计算Z0和Zt示例a. 计算红海Z0; b. 计算加利福尼亚湾Z0; c. 计算红海Zt; d. 计算加利福尼亚湾Zt。每图中下部曲线为基于窗口傅里叶变换的结果, 上部曲线为基于小波变换的结果 Fig. 3 Examples of radial averages of amplitude spectra of magnetic anomaly and their linear fits to calculating Z0 and Zt. (a) Calculating Z0 in the Red Sea; (b) calculating Z0 in the Gulf of California; (c) calculating Zt in the Red Sea; (d) calculating Zt in the Gulf of California. In each panel, the curves in the lower part are the results based on Fourier transform, while the curves in the upper part are the results based on wavelet transform |
表1 红海的计算窗口参数Tab. 1 Calculation window parameters for the Red Sea |
移动窗口大小/(km×km) | 移动窗口数量 | 移动步长/km |
---|---|---|
99.2×99.2 | 55×67 | 49.6 |
148.8×148.8 | 36×44 | 74.4 |
198.4×198.4 | 27×33 | 99.2 |
图4 基于傅里叶变换计算得到的红海居里面深度图a. 窗口大小为99.2km×99.2km; b. 窗口大小为148.8km×148.8km; c. 窗口大小为198.4km×198.4km; d. 平均居里面深度。黑色虚线表示红海分段。红色实线表示红海裂谷轴部。黑色实线表示断层。蓝色虚线AA’表示 Fig. 4 Curie depth map of the Red Sea based on Fourier transform. (a) Window size = 99.2 km×99.2 km; (b) window size = 148.8 km×148.8 km; (c) window size = 198.4 km×198.4 km; (d) average Curie depth. The black dashed line delimits the Red Sea segment. The red solid line indicates the Red Sea rift axis. The solid black line indicates fault. The blue dashed line AA’ indicates the profile location of |
图5 基于小波变换计算得到的红海居里面深度图a. 中央波数|k0|=2.668; b. 中央波数|k0|=3.773; c. 中央波数|k0|=5.336; d. 平均居里面深度 Fig. 5 Curie depth map of the Red Sea based on wavelet transform. (a) Central wavenumber |k0| =2.668; (b) central wavenumber |k0|=3.773; (c) central wavenumber |k0| =5.336; (d) average Curie depth |
表2 加利福尼亚湾的计算窗口参数Tab. 2 Calculation window parameters for the Gulf of California |
移动窗口大小/(km×km) | 移动窗口数量 | 移动步长/km |
---|---|---|
99.2×99.2 | 46×56 | 49.6 |
148.8×148.8 | 30×37 | 74.4 |
198.4×198.4 | 22×27 | 99.2 |
图6 基于傅里叶变换计算得到的加利福尼亚湾地区居里面深度图a. 窗口大小为99.2km×99.2km; b. 窗口大小为148.8km×148.8km; c. 窗口大小为198.4km×198.4km; d. 平均居里面深度。WB: Wagner盆地; CB: Consag盆地; DB: Delfin盆地; TB: Tiburon盆地; AB: Alarcon盆地; PB: Pescadero盆地; FB: Farallon盆地; CB: Carmen盆地; GB: Guaymas盆地。红色实线表示加利福尼亚湾南部的扩张段和加利福尼亚湾北部复杂的拉分盆地。裂谷内黑色实线表示转换断层。粉色虚线BB’表示 Fig. 6 Curie depth map of the Gulf of California based on Fourier transform. (a) Window size = 99.2 km×99.2 km; (b) window size = 148.8 km×148.8 km; (c) window size = 198.4 km×198.4 km; (d) average Curie depth. WB: Wagner Basin; CB: Consag Basin; DB: Delfin Basin; TB: Tiburon Basin; AB: Alarcon Basin; PB: Pescadero Basin; FB: Farallon Basin; CB: Carmen Basin; GB: Guaymas Basin. The solid red line indicates the spreading section in the southern Gulf of California and the complex pull-apart basin in the northern Gulf of California. The black solid line within the rift valley indicates transform fault. The pink dashed line BB’ indicates the profile location of |
图7 基于小波变换计算得到的加利福尼亚湾地区居里面深度图a. 中央波数|k0|=2.668; b. 中央波数|k0|=3.773; c. 中央波数|k0|=5.336; d. 平均居里面深度 Fig.7 Curie depth map of the Gulf of California based on wavelet transform. (a) Central wavenumber |k0| =2.668; (b) central wavenumber |k0| =3.773; (c) central wavenumber |k0| =5.336; (d) average Curie depth |
图8 居里面深度剖面图a. 红海地区沿AA’剖面居里面深度, AA’剖面位置见 Fig. 8 Curie depth profiles. (a) Profile AA’ in the Red Sea region ( |
图11 平均居里点深度与地表热流之间的相关性a. 红海基于傅里叶变换计算结果; b. 红海基于小波变换计算结果; c. 加利福尼亚湾基于傅里叶变换计算结果; d. 加利福尼亚湾基于小波变换计算结果。蓝色虚线为基于一维热传导模型公式(10)计算的理论关系曲线, 其中Tc=550℃, Ts=5℃, Zs=4km, hr =5km, Hs=1.37μW·m-3 (Li et al, 2017), κ取1~6W·(m℃)-1不等 Fig. 11 Correlation between Curie depth and surface heat flow. (a) Results in the Red Sea based on Fourier transform; (b) results in the Red Sea based on Wavelet transform; (c) results in the Gulf of California based on Fourier transform; (d) results in the Gulf of California based on Wavelet transform. The blue dashed line shows the theoretical curves calculated based on the one-dimensional heat transfer model in Equation (10), where Tc = 550 °C, Ts = 5 °C, Zs = 4 km, hr = 5 km, and Hs = 1.37 μW·m-3 (Li et al, 2017), andκ is taken to vary from 1 to 6 W·(m℃) -1 |
图12 洋壳年龄小于5Myr的居里面深度随扩张速率的变化浅绿色和浅蓝色点为全球居里面参考模型GCDM(Li et al, 2017)中洋壳年龄小于5Myr的居里面深度。深绿色和深蓝色点分别为本文计算的红海和加利福尼亚湾平均居里面深度(傅里叶变换和小波变换的总和)。误差棒是浅绿色和浅蓝色点以5mm·yr-1为间隔的居里面深度标准差。误差棒中黑色正方形是浅绿色和浅蓝色点以5mm·yr-1为间隔的居里面深度平均值 Fig. 12 Curie depths versus spreading rate around the spreading center (age of oceanic crust less than 5 Myr). The light green and light blue dots are the Curie depths within 5 Myr from the global reference Curie-point depth model GCDM (Li et al, 2017). The dark green and dark blue dots are the average Curie depths of the Red Sea and Gulf of California calculated in this study, respectively (sum of the results based on both Fourier and wavelet transform). The error bars are the standard deviation of the Curie depths of the light green and light blue dots at 5 mm·yr-1 intervals. The black squares in the error bars are the mean Curie depths |
图13 红海热液喷口位置(a)及加利福尼亚湾热液喷口位置(b)ShD: Shaban Deep; KD: Kebrit Deep; ND: Nereus Deep; AD: Atlantis Ⅱ Deep; DD: Discovery Deep; SuD: Suakin Deep; RSR, 18°N: Red Sea Rift, 18°N; WB: Wagner盆地; CB: Consag盆地; Rv: Ringvent; GB: Guaymas盆地; PB: Pescadero盆地; AB: Alarcon盆地。底图为基于小波变换的平均居里面深度 Fig. 13 Location of hydrothermal vents in the Red Sea (a) and the Gulf of California (b). ShD: Shaban Deep; KD: Kebrit Deep; ND: Nereus Deep; AD: Atlantis Ⅱ Deep; DD: Discovery Deep; SuD: Suakin Deep; RSR, 18°N: Red Sea Rift, 18°N; WB: Wagner Basin; CB: Consag Basin; Rv: Ringvent; GB: Guaymas Basin; PB: Pescadero Basin; AB: Alarcon Basin. The background shows the average Curie depth based on wavelet transform |
[1] |
宋珏琛, 李江海, 冯博, 2021. 慢速-超慢速扩张洋中脊热液活动及其机理[J]. 地质学报, 95(8): 2273-2283.
|
[2] |
徐行, 姚永坚, 彭登, 等, 2018. 南海西南次海盆的地热流特征与分析[J]. 地球物理学报, 61(7): 2915-2925.
|
[3] |
王淑杰, 翟世奎, 于增慧, 等, 2018. 关于现代海底热液活动系统模式的思考[J]. 地球科学, 43(3): 835-850.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
GEBCO COMPILATION GROUP, 2021. The GEBCO_2021 Grid-A continuous terrain model of the global oceans and land[DB/OL]. Published Data Library (PDL), [2023-03-09]. https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f/
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
/
〈 | 〉 |