[1] |
宋珏琛, 李江海, 冯博, 2021. 慢速-超慢速扩张洋中脊热液活动及其机理[J]. 地质学报, 95(8): 2273-2283.
|
|
SONG JUECHEN, LI JIANGHAI, FENG BO, 2021. Hydrothermal activity and mechanism along slow- and ultraslow- spreading mid-ocean ridges[J]. Acta Geologica Sinica, 95(8): 2273-2283 (in Chinese with English abstract).
|
[2] |
徐行, 姚永坚, 彭登, 等, 2018. 南海西南次海盆的地热流特征与分析[J]. 地球物理学报, 61(7): 2915-2925.
|
|
XU XING, YAO YONGJIAN, PENG DENG, et al, 2018. The characteristics and analysis of heat flow in the Southwest sub-basin of South China Sea[J]. Chinese Journal of Geophysics, 61(7): 2915-2925 (in Chinese with English abstract).
|
[3] |
王淑杰, 翟世奎, 于增慧, 等, 2018. 关于现代海底热液活动系统模式的思考[J]. 地球科学, 43(3): 835-850.
|
|
WANG SHUJIE, ZHAI SHIKUI, YU ZENGHUI, et al, 2018. Reflections on model of modern seafloor hydrothermal system[J]. Journal of Earth Science, 43(3): 835-850 (in Chinese with English abstract).
|
[4] |
ABOUD E, ALQAHTANI F, ABDULFARRAJ M, et al, 2023. Geothermal imaging of the Saudi Cross-Border City of NEOM deduced from magnetic data[J]. Sustainability, 15(5): 4549.
doi: 10.3390/su15054549
|
[5] |
ABOUD E, ALOTAIBI A M, SAUD R, 2016. Relationship between Curie isotherm surface and Moho discontinuity in the Arabian shield, Saudi Arabia[J]. Journal of Asian Earth Sciences, 128: 42-53.
doi: 10.1016/j.jseaes.2016.07.025
|
[6] |
ADDISON P S, 2002. The illustrated wavelet transform handbook[M]. Bristol, UK: Institute of Physics Publishing.
|
[7] |
ÁNGELES C, PROL-LEDESMA R M, CASTRO K F, 2017. Organic matter characterization in sediments from the Wagner-Consag Basins, Gulf of California: Evidence of hydrothermal activity[J]. Procedia Earth and Planetary Science, 17: 550-553.
doi: 10.1016/j.proeps.2016.12.139
|
[8] |
ANSCHUTZ P, 2015. Hydrothermal activity and paleoenvironments of the Atlantis Ⅱ Deep[J]. The Red Sea, 235-249.
|
[9] |
AUGUSTIN N, DEVEY C W, VAN DER ZWAN F M, et al, 2014. The rifting to spreading transition in the Red Sea[J]. Earth and Planetary Science Letters, 395: 217-230.
doi: 10.1016/j.epsl.2014.03.047
|
[10] |
AUGUSTIN N, VAN DER ZWAN F M, DEVEY C W, et al, 2016. Geomorphology of the central Red Sea Rift: Determining spreading processes[J]. Geomorphology, 274: 162-179.
doi: 10.1016/j.geomorph.2016.08.028
|
[11] |
BEAULIEU S E, SZAFRANSKI K, 2020. Inter Ridge global database of active submarine hydrothermal vent fields, Version 3. 4[DB/OL]. [2023-03-09]. http://vents-data. interridge.org.
|
[12] |
CAMPOS-ENRÍQUEZ J O, ESPINOSA-CARDEÑA J M, OKSUM E, 2019. Subduction control on the curie isotherm around the Pacific-North America plate boundary in northwestern Mexico (Gulf of California). Preliminary results[J]. Journal of Volcanology and Geothermal Research, 375: 1-17.
doi: 10.1016/j.jvolgeores.2019.03.005
|
[13] |
CANET C, PROL-LEDESMA R M, DANDO P R, et al, 2010. Discovery of massive seafloor gas seepage along the Wagner Fault, northern Gulf of California[J]. Sedimentary Geology, 228(3-4): 292-303.
doi: 10.1016/j.sedgeo.2010.05.004
|
[14] |
CHARLOU J L, FOUQUET Y, DONVAL J P, et al, 1996. Mineral and gas chemistry of hydrothermal fluids on an ultrafast spreading ridge: East Pacific Rise, 17 to 19 S(Naudur cruise, 1993) phase separation processes controlled by volcanic and tectonic activity[J]. Journal of Geophysical Research: Solid Earth, 101(B7)
|
[15] |
CRUZ R Y B, PEIFFER L, WEBER B, et al, 2020. Geochemical characteristics of pore waters from sediment cores of the Wagner Basin, Gulf of California[J]. Applied Geochemistry, 113: 104467.
doi: 10.1016/j.apgeochem.2019.104467
|
[16] |
DORSEY R J, UMHOEFER P J, 2011. Influence of sediment input and plate‐motion obliquity on basin development along an active oblique‐divergent plate boundary: Gulf of California and Salton Trough[J]. Tectonics of Sedimentary Basins: Recent Advances, 209-225.
|
[17] |
ESQUIVEL T A, FLORES C, ORTEGA V R, et al, 2020. Magnetotelluric exploration of the Wagner Basin, Gulf of California, Mexico: Evidence for an axial magma chamber and hydrothermal circulation[J]. Journal of South American Earth Sciences, 99: 102501.
doi: 10.1016/j.jsames.2020.102501
|
[18] |
FEELY R A, BAKER E T, MARUMO K, et al, 1996. Hydrothermal plume particles and dissolved phosphate over the superfast-spreading southern East Pacific Rise[J]. Geochimica et Cosmochimica Acta, 60(13): 2297-2323.
doi: 10.1016/0016-7037(96)00099-3
|
[19] |
FUCHS S, NORDEN B, 2021. International Heat Flow Commission (2021): The global heat flow database: release 2021[DB/OL]. GFZ Data Services, [2023-03-09]. https://doi.org/10.5880/fidgeo.2021.014
|
[20] |
GAUDREAU É, AUDET P, SCHNEIDER D A, 2019. Mapping Curie depth across western Canada from a wavelet analysis of magnetic anomaly data[J]. Journal of Geophysical Research: Solid Earth, 124(5): 4365-4385.
doi: 10.1029/2018JB016726
|
[21] |
GEBCO COMPILATION GROUP, 2021. The GEBCO_2021 Grid-A continuous terrain model of the global oceans and land[DB/OL]. Published Data Library (PDL), [2023-03-09]. https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f/
|
[22] |
GEILERT S, HENSEN C, SCHMIDT M, et al, 2018. On the formation of hydrothermal vents and cold seeps in the Guaymas Basin, Gulf of California[J]. Biogeosciences, 15(18): 5715-5731.
doi: 10.5194/bg-15-5715-2018
|
[23] |
GONZÁLEZ-ESCOBAR M, SUÁREZ-VIDAL F, SOJO-AMEZQUITA A, et al, 2014. Consag basin: Northern gulf of California, evidence of generation of new crust, based on seismic reflection data[J]. International Geology Review, 56(11): 1315-1331.
doi: 10.1080/00206814.2014.941023
|
[24] |
HARASH F, CHEN CHAO, 2022. Determination of Curie Point depth distribution and heat flow regime characteristics in Eratosthenes seamount, eastern Mediterranean Sea[J]. Energies, 15(22): 8634.
doi: 10.3390/en15228634
|
[25] |
HOVLAND M, RUESLÅTTEN H, JOHNSEN H K, 2015. Red Sea salt formations—a result of hydrothermal processes[M]// RASUL N, STEWART I, The Red Sea. Berlin, Heidelberg: Springer: 187-203.
|
[26] |
IWAMOTO K, SUENAGA N, YOSHIOKA S, 2022. Temperature distribution for interplate seismic events in the southcentral Alaska subduction zone based on 3-D thermomechanical modeling[J]. Tectonophysics, 843: 229604.
doi: 10.1016/j.tecto.2022.229604
|
[27] |
LARSON R L, 1972. Bathymetry, magnetic anomalies, and plate tectonic history of the mouth of the Gulf of California[J]. Geological Society of America Bulletin, 83(11): 3345-3360.
doi: 10.1130/0016-7606(1972)83[3345:BMAAPT]2.0.CO;2
|
[28] |
LEVI S, RIDDIHOUGH R, 1986. Why are marine magnetic anomalies suppressed over sedimented spreading centers?[J]. Geology, 14(8): 651-654.
doi: 10.1130/0091-7613(1986)14<651:WAMMAS>2.0.CO;2
|
[29] |
LI CHUNFENG, 2011. An integrated geodynamic model of the Nankai subduction zone and neighboring regions from geophysical inversion and modeling[J]. Journal of Geodynamics, 51(1): 64-80.
doi: 10.1016/j.jog.2010.08.003
|
[30] |
LI CHUNFENG, CHEN BING, ZHOU ZUYI, 2009. Deep crustal structures of eastern China and adjacent seas revealed by magnetic data[J]. Science in China Series D: Earth Sciences, 52(7): 984-993.
|
[31] |
LI CHUNFENG, LU YU, WANG JIAN, 2017. A global reference model of Curie-point depths based on EMAG2[J]. Scientific reports, 7(1): 1-9.
doi: 10.1038/s41598-016-0028-x
|
[32] |
LI CHUNFENG, SHI XIAOBIN, ZHOU ZUYI, et al, 2010. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications[J]. Geophysical Journal International, 182(3): 1229-1247.
doi: 10.1111/j.1365-246X.2010.04702.x
|
[33] |
LI CHUNFENG, WANG JIAN, 2018. Thermal structures of the Pacific lithosphere from magnetic anomaly inversion[J]. Earth and Planetary Physics, 2(1): 52-66.
|
[34] |
LI CHUNFENG, WANG JIAN, LIN JIAN, et al, 2013. Thermal evolution of the North Atlantic lithosphere: New constraints from magnetic anomaly inversion with a fractal magnetization model[J]. Geochemistry, Geophysics, Geosystems, 14(12): 5078-5105.
doi: 10.1002/ggge.v14.12
|
[35] |
LI CHUNFENG, ZHOU DUO, WANG JIAN, 2019. On application of fractal magnetization in Curie depth estimation from magnetic anomalies[J]. Acta Geophysica, 67(5): 1319-1327.
doi: 10.1007/s11600-019-00339-6
|
[36] |
LONSDALE P, BECKER K, 1985. Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin[J]. Earth and Planetary Science Letters, 73(2-4): 211-225.
doi: 10.1016/0012-821X(85)90070-6
|
[37] |
LOWELL R P, KOLANDAIVELU K, RONA P A, 2014. Hydrothermal activity[J]. Reference Module in Earth Systems and Environmental Sciences, Elsevier. doi: 10.1016/B978-0-12-409548-9.09132-6.
|
[38] |
LUCAZEAU F, 2019. Analysis and mapping of an updated terrestrial heat flow data set[J]. Geochemistry, Geophysics, Geosystems, 20(8): 4001-4024.
doi: 10.1029/2019GC008389
|
[39] |
MAUS S, BARCKHAUSEN U, BERKENBOSCH H, et al, 2009. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements[J]. Geochemistry, Geophysics, Geosystems, 10(8): 8005.
|
[40] |
MOUSAVI N, EBRAHIMZADEH ARDESTANI V, 2023. 3D surface heat flow, low-temperature basins and Curie point depth of the Iranian Plateau: Hydrocarbon reservoirs and iron deposits[J]. Journal of the Earth and Space Physics, 48(4): 137-150.
|
[41] |
NEUMANN F, NEGRETE-ARANDA R, HARRIS R N, et al, 2017. Systematic heat flow measurements across the Wagner Basin, northern Gulf of California[J]. Earth and Planetary Science Letters, 479: 340-353.
doi: 10.1016/j.epsl.2017.09.037
|
[42] |
OKUBO Y, GRAF R J, HANSEN R O, et al, 1985. Curie point depths of the island of Kyushu and surrounding areas, Japan[J]. Geophysics, 50(3): 481-494.
doi: 10.1190/1.1441926
|
[43] |
PAMUK E, ÖZSÖZ İ, 2022. Estimation of Curie-point depths and heat flow from spectral analysis of EMAG2 magnetic data in Cyprus Island[J]. Annals of Geophysics, 65(4): GD427-GD427.
|
[44] |
PERSAUD P, STOCK J M, STECKLER M S, et al, 2003. Active deformation and shallow structure of the Wagner, Consag, and Delfin basins, northern Gulf of California, Mexico[J]. Journal of Geophysical Research: Solid Earth, 108(B7): 2355.
|
[45] |
PIERRET M C, CLAUER N, BOSCH D, et al, 2001. Chemical and isotopic (87Sr/86Sr, δ18O, δD) constraints to the formation processes of Red-Sea brines[J]. Geochimica et Cosmochimica Acta, 65(8): 1259-1275.
doi: 10.1016/S0016-7037(00)00618-9
|
[46] |
PROL-LEDESMA R M, TORRES-VERA M A, RODOLFO-METALPA R, et al, 2013. High heat flow and ocean acidification at a nascent rift in the northern Gulf of California[J]. Nature Communications, 4(1): 1-7.
|
[47] |
RAMÍREZ G A, MCKAY L J, FIELDS M W, et al, 2020. The Guaymas Basin subseafloor sedimentary archaeome reflects complex environmental histories[J]. Iscience, 23(9): 101459.
doi: 10.1016/j.isci.2020.101459
|
[48] |
SAADA S A, MICKUS K, ELDOSOUKY A M, et al, 2021. Insights on the tectonic styles of the Red Sea rift using gravity and magnetic data[J]. Marine and Petroleum Geology, 133: 105253.
doi: 10.1016/j.marpetgeo.2021.105253
|
[49] |
SALEH S, SALK M, PAMUKCU O, 2013. Estimating Curie point depth and heat flow map for northern Red Sea rift of Egypt and its surroundings, from aeromagnetic data[J]. Pure and applied geophysics, 170(5): 863-885.
doi: 10.1007/s00024-012-0461-0
|
[50] |
SCHMIDT M, AL-FARAWATI R, BOTZ R, 2015. Geochemical classification of brine-filled Red Sea deeps[J]. The Red Sea: The formation, Morphology, Oceanography and Environment of A Young Ocean Basin, 219-233.
|
[51] |
SONG JUECHEN, LI JIANGHAI, FENG BO, 2021. Hydrothermal activity and mechanism along slow-and ultraslow-spreading midocean ridges[J]. Acta Geologica Sinica, 95(8): 2273-2283.
|
[52] |
STEIN C A, STEIN S, 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow[J]. Journal of Geophysical Research: Solid Earth, 99(B2): 3081-3095.
|
[53] |
STERN R J, JOHNSON P R, 2019. Constraining the opening of the Red Sea: Evidence from the Neoproterozoic margins and Cenozoic magmatism for a volcanic rifted margin[J]. Geological Setting, Palaeoenvironment and Archaeology of the Red Sea, 53-79.
|
[54] |
STYRON R, PAGANI M, 2020. The GEM global active faults database[J]. Earthquake Spectra, 36(1): 160-180. doi: 10.1177/8755293020944182
|
[55] |
SWALLOW J C, CREASE J, 1965. Hot salty water at the bottom of the Red Sea[J]. Nature, 205(4967): 165-166.
doi: 10.1038/205165a0
|
[56] |
TANAKA A, OKUBO Y, MATSUBAYASHI O, 1999. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia[J]. Tectonophysics, 306(3-4): 461-470.
doi: 10.1016/S0040-1951(99)00072-4
|
[57] |
TESKE A, MCKAY L J, RAVELO A C, et al, 2019. Characteristics and evolution of sill-driven off-axis hydrothermalism in Guaymas Basin-the Ringvent site[J]. Scientific reports, 9(1): 13847.
doi: 10.1038/s41598-019-50200-5
|
[58] |
UMHOEFER P J, 2011. Why did the southern Gulf of California rupture so rapidly? — Oblique divergence across hot, weak lithosphere along a tectonically active margin[J]. GSA today, 21(11): 4-10.
|
[59] |
VAN DER ZWAN F M, DEVEY C W, AUGUSTIN N, et al, 2015. Hydrothermal activity at the ultraslow-to slow-spreading Red Sea Rift traced by chlorine in basalt[J]. Chemical Geology, 405: 63-81.
doi: 10.1016/j.chemgeo.2015.04.001
|
[60] |
VAN DER ZWAN F M, DEVEY C W, AUGUSTIN N, 2019. Hydrothermal prospection in the Red Sea Rift: Geochemical messages from basalts[M]// RASUL N, STEWART I, Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. Cham: Springer: 221-232.
|
[61] |
VAN WIJK J W, HEYMAN S P, AXEN G J, et al, 2019. Nature of the crust in the northern Gulf of California and Salton Trough[J]. Geosphere, 15(5): 1598-1616.
doi: 10.1130/GES02082.1
|
[62] |
VON DAMM K L, LILLEY M D, SHANKS Ⅲ W C, et al, 2003. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise[J]. Earth and Planetary Science Letters, 206(3-4): 365-378.
doi: 10.1016/S0012-821X(02)01081-6
|
[63] |
WANG JIAN, LI CHUNFENG, 2015. Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle[J]. Tectonophysics, 638: 112-125.
doi: 10.1016/j.tecto.2014.11.002
|
[64] |
WANG YINGCHUN, PANG ZHONGHE, 2022. Heat flux in volcanic and geothermal areas: Methods, principles, applications and future directions[J]. Gondwana Research, 122: 260-278.
doi: 10.1016/j.gr.2022.09.010
|
[65] |
YIN YIHONG, LI CHUNFENG, LU YU, 2021. Estimating Curie-point depths using both wavelet-based and Fourier spectral centroid methods in the western Pacific marginal seas[J]. Geophysical Journal International, 227(2): 798-812.
doi: 10.1093/gji/ggab257
|
[66] |
ZHOU DUO, LI CHUNFENG, ZLOTNIK S, et al, 2020. Correlations between oceanic crustal thickness, melt volume, and spreading rate from global gravity observation[J]. Marine Geophysical Research, 41(3): 1-16.
doi: 10.1007/s11001-020-09401-1
|