西菲律宾海乌尔达内塔洋底高原火山岩地球化学和地幔源区特征
陈馨(1999—), 女, 从事海洋地质学研究。email: |
Copy editor: 孙翠慈
收稿日期: 2023-09-23
修回日期: 2023-10-18
网络出版日期: 2023-12-18
基金资助
国家重点研发计划项目(2022YFF0801000)
国家自然科学基金项目(91858206)
国家自然科学基金项目(41876040)
Geochemistry and mantle source characteristics of volcanic rocks in the Urdaneta Plateau of the West Philippine Sea
Copy editor: SUN Cuici
Received date: 2023-09-23
Revised date: 2023-10-18
Online published: 2023-12-18
Supported by
National Key Research and Development Plan Project(2022YFF0801000)
National Natural Science Foundation of China(91858206)
National Natural Science Foundation of China(41876040)
自始新世以来, 西菲律宾海板块经历了复杂的地质演化过程, 在盆地形成过程中伴随有大量板内火山岩形成, 板内火山岩主要表现为洋底高原, 这些板内火山岩之间的联系一直是研究关注的重点。其中, 本哈姆隆起和乌尔达内塔两个洋底高原因其构造位置特殊是研究西菲律宾海盆内板内火山岩相互关系的良好切入点。本次研究对在乌尔达内塔高原获得的10个火山岩样品进行了电子探针矿物分析, 全岩主量元素、微量元素及同位素分析。分析结果表明我们获得的乌尔达内塔高原火山岩为碱性玄武岩, 其地幔归一化微量元素模式具有典型洋岛玄武岩特征; 具有较高的(Sm/Yb)N值(1.89~3.92), 指示源区可能存在石榴子石。结合前人研究获得的西菲律宾海盆板内火山岩数据, 我们发现乌尔达内塔高原碱性玄武岩具有与本哈姆隆起拉斑玄武岩相似的Sr-Nd-Hf同位素组成, 但具有明显低的206Pb/204Pb同位素组成; 西菲律宾海盆内碱性洋岛玄武岩与拉斑洋岛玄武岩的Sr-Nd-Hf同位素组成范围几乎相同, 但铅同位素组成存在明显差异, 碱性洋岛玄武岩的铅同位素比值范围更大。西菲律宾盆地形成环境复杂, 板内火山岩形成时可能受到盆地扩张作用和地幔柱的影响, 我们利用同位素数据模拟了地幔柱与扩张中心相互作用对板内碱性玄武岩的影响, 模拟结果表明碱性火山岩的低206Pb/204Pb值不能通过与地幔柱有关的富集组分和与海盆扩张作用有关的亏损组分混合实现, 表明乌尔达内塔高原碱性火山岩具有一个相对独立的地幔源区, 形成时已远离扩张中心, 不受扩张作用影响。另一方面, 乌尔达内塔高原碱性玄武岩形成时晚于拉斑玄武岩1~2Ma, 并且部分熔融程度更低, 乌尔达内塔高原拉斑玄武岩和碱性玄武岩可能分别对应岩浆活动的主要阶段和晚期阶段。因此, 我们认为乌尔达内塔高原与本哈姆隆起岩浆活动的主要阶段可能具有相同的地幔源区, 两高原受同一地幔柱影响; 在乌尔达内塔高原岩浆活动的晚期阶段, 乌尔达内塔高原则具有相对独立的源区。
陈馨 , 张国良 . 西菲律宾海乌尔达内塔洋底高原火山岩地球化学和地幔源区特征[J]. 热带海洋学报, 2024 , 43(4) : 42 -56 . DOI: 10.11978/2023137
Since the Eocene, the West Philippine Sea Plate has undergone complex geological evolution, accompanied by a large amount of magmatism during the basin formation process, forming a large number of intraplate volcanic rocks. The intraplate volcanic rocks mainly occur in the ocean floor plateau, and the interrelationships between these intraplate volcanic rocks have always been a focus of research attention. Among them, the Benham Rise and the Urdaneta Plateau are good entry points for studying the interrelationships between volcanic rocks within the ocean floor plateaus in the West Philippine Basin due to their unique tectonic positions. This study conducted electron probe mineral analysis on 10 volcanic rock samples obtained from the Urdaneta Plateau, including major, trace, and isotopic analyses of the whole rock. The analysis results indicate that all the volcanic rocks in the Urdaneta Plateau we obtained are alkaline basalts, and their mantle normalized trace element patterns exhibit typical oceanic island basalt characteristics; They have high (Sm/Yb)N values (1.89~3.92), indicating the possible presence of garnet in the source area. Based on the volcanic rock data obtained from previous studies on the seafloor of the West Philippine Basin, we found that the Sr-Nd-Hf isotope composition range of alkaline island basalts and tholeiitic island basalts in the West Philippine Basin is almost the same, but there is a significant difference in lead isotope composition, with a larger range of lead isotope ratios for alkaline island basalts. These alkaline basalts from the Urdaneta Plateau have Sr-Nd-Hf isotopic compositions similar to those of the Benham Rise tholeiitic basalts, but have significantly lower 206Pb/204Pb isotopic compositions. The formation environment of the West Philippine Basin is complex, and the formation of intraplate volcanic rocks may be influenced by basin expansion and mantle plumes. We simulated the impact of the interaction between mantle plumes and expansion centers on intraplate alkaline basalts based on isotope values. The simulation results show that 206Pb/204Pb values cannot be achieved by mixing enriched components related to mantle plumes with depleted components related to basin expansion, this indicates that the alkaline volcanic rocks in the Urdaneta Plateau have a relatively independent mantle source area, which was formed far from the spreading center and not affected by the spreading process. The formation of alkaline basalts in the Urdaneta Plateau occurred 1~2 Ma later than tholeiitic basalts, and the degree of partial melting was lower. The tholeiitic and alkaline basalts in the Urdaneta Plateau may correspond to the main and late stages of magmatic activity, respectively. Therefore, we believe that the main stages of magmatic activity in the Urdaneta Plateau and the Benham Rise may have the same mantle source region, and the two plateaus are influenced by the same mantle plume; in the late stage of magmatic activity on the Urdaneta Plateau, there is a relatively independent source area.
Key words: West Philippine Basin; Urdaneta Plateau; alkaline basalt; isotopes; mantle source
图1 a. 菲律宾海板块地质图; b. 西菲律宾海盆地质图该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2021)5449号的标准地图制作, 底图无修改。红点表示本次研究采样位置, 白点表示前人研究采样位置, 黄点表示DSDP和ODP钻探计划(Ocean Drilling Program, ODP) 站点; 数据来源(Hickey-Vargas, 1998a, b; Savov et al, 2006; Ishizuka et al, 2013; Yogodzinski et al, 2018) Fig. 1 (a) Geological map of the Philippine Sea Plate; (b) geological map of the West Philippine Basin (showing sample locations). The red dot represents the sampling location for this study, the white dot represents the sampling location for previous studies, and the yellow dot represents the DSDP and ODP drilling plan sites; data are from Hickey-Vargas (1998a, b); Savov et al (2006); Ishizuka et al (2013); Yogodzinski et al (2018) |
图2 乌尔达内塔高原火山岩电子探针照片Pl, 斜长石; Py, 辉石; Ilm, 钛磁铁矿; Apt, 磷灰石 Fig. 2 Electron probe photos of volcanic rocks in the Urdaneta Plateau. Pl, plagioclase; Py, pyroxene; Ilm, ilmenite; Apt, apatite |
表1 乌尔达内塔高原S1-T火山岩主量元素分析测试结果Tab. 1 Whole-rock major element compositions of Urdaneta Plateau S1-T Volcanic rocks in % |
元素 | 标样BHVO-2元素含量/% | 高磷组元素含量/(wt%) | 低磷组元素含量/(wt%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
标准值 | 测试值 | S1-T-1B | S1-T-1C | S1-T-1F | S1-T-2C | S1-T-5 | S1-T-2A | S1-T-2E | S1-T-2F | S1-T-3 | S1-T-6 | |
Na2O | 2.22±0.08 | 2.249 | 3.28 | 3.65 | 3.07 | 3.26 | 4.06 | 3.74 | 3.21 | 3.87 | 3.95 | 3.60 |
MgO | 7.23±0.12 | 7.319 | 1.83 | 2.74 | 1.78 | 3.81 | 1.19 | 1.52 | 2.09 | 1.75 | 1.75 | 1.82 |
Al2O3 | 13.5±0.2 | 13.703 | 11.92 | 13.61 | 12.21 | 13.26 | 15.70 | 12.28 | 12.48 | 12.73 | 12.38 | 12.29 |
SiO2 | 49.9±0.6 | 51.514 | 38.60 | 44.66 | 36.41 | 44.26 | 49.27 | 51.58 | 47.34 | 50.07 | 50.89 | 50.20 |
P2O5 | 0.27±0.02 | 0.271 | 9.61 | 3.56 | 11.08 | 2.29 | 5.98 | 0.63 | 0.65 | 0.69 | 0.81 | 0.62 |
K2O | 0.52±0.01 | 0.521 | 1.56 | 1.12 | 1.08 | 1.68 | 3.73 | 2.21 | 2.56 | 2.14 | 1.59 | 2.20 |
CaO | 11.4±0.2 | 11.514 | 15.87 | 10.54 | 17.35 | 8.64 | 10.76 | 5.59 | 4.41 | 5.66 | 6.56 | 5.53 |
TiO2 | 2.73±0.04 | 2.428 | 2.09 | 2.60 | 2.29 | 2.67 | 1.30 | 1.77 | 1.88 | 1.83 | 1.79 | 1.88 |
MnO | 0.167±0.005 | 0.170 | 0.08 | 0.14 | 0.08 | 0.14 | 0.07 | 0.31 | 0.18 | 0.28 | 0.36 | 0.36 |
Fe2O3 | 12.3±0.2 | 12.265 | 9.06 | 11.25 | 8.65 | 14.95 | 3.84 | 17.07 | 18.55 | 17.06 | 17.42 | 18.26 |
LOI | 6.12 | 5.39 | 5.76 | 4.25 | 3.69 | 3.25 | 5.77 | 4.07 | 2.12 | 3.67 | ||
Total | 100.01 | 99.27 | 99.74 | 99.21 | 99.59 | 99.96 | 99.11 | 100.13 | 99.63 | 100.43 |
表2 乌尔达内塔高原S1-T火山岩微量元素分析测试结果Tab. 2 Whole-rock trace element compositions of Urdaneta Plateau S1-T Volcanic rocks in ppm |
元素 | 高磷组微量元素含量/ppm | 低磷组微量元素含量/ppm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
S1-T-1B | S1-T-1C | S1-T-1F | S1-T-2C | S1-T-5 | S1-T-2A | S1-T-2E | S1-T-2F | S1-T-3 | S1-T-6 | |
Sc | 33.9 | 31.7 | 24.9 | 30.8 | 10.9 | 31.2 | 32.9 | 32.5 | 33.8 | 32.7 |
V | 97.3 | 141 | 104 | 217 | 57.3 | 18.8 | 36.6 | 23.1 | 17.5 | 25.2 |
Cr | 18.4 | 22.8 | 7.58 | 24.2 | 27.1 | 120 | 32.2 | 40.4 | 81 | 79.7 |
Ni | 16.4 | 20 | 12.4 | 17.8 | 38.4 | 57.6 | 28.9 | 24.1 | 37.9 | 51 |
Cu | 48.2 | 39.5 | 49.6 | 46.7 | 48.7 | 47 | 114 | 61.2 | 45.6 | 79.1 |
Zn | 139 | 237 | 180 | 163 | 105 | 216 | 275 | 234 | 233 | 229 |
Ga | 20.6 | 25.2 | 20.7 | 23.9 | 27 | 24.6 | 20.1 | 23.4 | 25.3 | 22.6 |
Rb | 29.5 | 18.7 | 20 | 31.4 | 45.9 | 47.4 | 53.5 | 43.4 | 27.9 | 44.9 |
Sr | 746 | 616 | 771 | 420 | 679 | 413 | 366 | 425 | 459 | 405 |
Y | 671 | 325 | 622 | 160 | 227 | 59.1 | 56.1 | 63.3 | 93.3 | 59.7 |
Zr | 230 | 209 | 258 | 187 | 358 | 320 | 329 | 323 | 322 | 334 |
Nb | 38.1 | 46.1 | 48.7 | 33.4 | 85.8 | 64.9 | 45.4 | 65.8 | 65.2 | 67.5 |
Cs | 0.647 | 0.518 | 0.59 | 0.535 | 0.275 | 0.82 | 1.52 | 0.847 | 0.449 | 0.909 |
Ba | 224 | 362 | 204 | 265 | 902 | 571 | 338 | 508 | 587 | 472 |
La | 381 | 163 | 274 | 91.4 | 107 | 39.7 | 34.4 | 39.8 | 55.8 | 38 |
Ce | 193 | 121 | 169 | 87.5 | 90.7 | 85.4 | 69.6 | 75.8 | 94.7 | 95.2 |
Pr | 69.2 | 35.3 | 43.4 | 24.3 | 21.4 | 10.7 | 9.23 | 10.6 | 14.7 | 10.3 |
Nd | 311 | 160 | 196 | 113 | 91.9 | 47.5 | 41.8 | 48 | 65.9 | 46.5 |
Sm | 67.7 | 36.3 | 41.6 | 27.3 | 19 | 11.7 | 10.5 | 11.9 | 16.1 | 11.6 |
Eu | 22.3 | 11.7 | 13.9 | 8.89 | 5.77 | 4.69 | 4.2 | 4.78 | 6.09 | 4.61 |
Gd | 88.8 | 44.5 | 61 | 31 | 23.5 | 12.6 | 11.4 | 13 | 17.8 | 12.5 |
Tb | 12.8 | 6.36 | 8.94 | 4.35 | 3.44 | 1.95 | 1.75 | 1.97 | 2.71 | 1.92 |
Dy | 75.2 | 36.7 | 56.2 | 23.7 | 21.1 | 11 | 9.95 | 11.2 | 15.5 | 10.9 |
Ho | 15.6 | 7.56 | 12.6 | 4.52 | 4.65 | 2.12 | 1.91 | 2.17 | 3.02 | 2.11 |
Er | 40 | 19.4 | 33.7 | 11.1 | 12.6 | 5.51 | 4.92 | 5.6 | 7.79 | 5.45 |
Tm | 5.22 | 2.57 | 4.46 | 1.42 | 1.73 | 0.789 | 0.699 | 0.798 | 1.09 | 0.772 |
Yb | 28.2 | 13.9 | 23.9 | 7.56 | 9.42 | 4.69 | 4.11 | 4.7 | 6.28 | 4.57 |
Lu | 4.36 | 2.13 | 3.76 | 1.13 | 1.48 | 0.706 | 0.62 | 0.704 | 0.945 | 0.687 |
Hf | 5.09 | 6.17 | 5.9 | 4.28 | 7.81 | 7.86 | 8.21 | 8.08 | 8.03 | 8.22 |
Ta | 2.71 | 3.59 | 3.11 | 2.15 | 4.82 | 3.9 | 2.16 | 4.07 | 4.03 | 4.19 |
Pb | 7.54 | 5.93 | 8.18 | 3.14 | 4.98 | 3.23 | 6.44 | 2.62 | 4.5 | 11.4 |
Th | 3.72 | 4.88 | 4.19 | 2.8 | 7.68 | 5.52 | 5.84 | 5.72 | 5.64 | 5.86 |
U | 2.34 | 0.934 | 3.35 | 0.546 | 2.05 | 0.896 | 0.745 | 0.784 | 0.901 | 0.779 |
图4 a. 西菲律宾海盆火山岩总碱含量与二氧化硅 (TAS)分类图; b. S1-T火山岩Zr/TiO2×0.0001 vs Nb/Y分类图本哈姆隆起和大东盆地火山岩数据来自Hickey-Vargas(1998a, b); 乌尔达内塔高原火山岩数据来自Ishizuka 等(2013)和Lelikov等(2016); 冲大东隆起数据来自Ishizuka 等(2013) Fig. 4 (a) Total alkalis vs SiO2 (TAS) diagram of volcanic rocks of the West Philippine Basin; (b) Zr/TiO2×0.0001 vs Nb/Y of S1-T volcanic rocks. Data of volcanic rocks of Benham Rise and Daito Basin are from Hickey-Vargas (1998a, b); data of volcanic rocks of Urdaneta Plateau are from Ishizka et al (2013) and Lelikov et al (2016); data of volanic rocks of Oki-Daito Rise are from Ishizuka et al (2013) |
图5 乌尔达内塔高原火山岩主量元素关系图a. SiO2; b. TiO2; c. Al2O3; d. Fe2O3; e. CaO; f. P2O5;本哈姆隆起和大东盆地火山岩数据来自Hickey-Vargas (1998a, b); 乌尔达内塔高原火山岩数据来自Ishizuka 等(2013) 和Lelikov等(2016); 冲大东隆起数据来自Ishizuka等(2013) Fig. 5 MgO content versus (a) SiO2, (b) TiO2, (c) Al2O3, (d) Fe2O3, (e) CaO, (f) P2O5 for West Philippine Basin Volcanic rocks. Data of volcanic rocks of Benham Rise and Daito Basin are from Hickey-Vargas (1998a, b); data of volcanic rocks of Urdaneta Plateau are from Ishizuka et al (2013) and Lelikov et al (2016); data of volcanic rocks of Oki-Daito Rise are from Ishizuka et al (2013) |
图6 a. 西菲律宾海盆火山岩稀土元素配分模式图; b. 微量元素配分模式图本哈姆隆起和大东盆地火山岩数据来自Hickey-Vargas(1998a, b); 乌尔达内塔高原火山岩数据来自Ishizuka等(2013)和Lelikov 等(2016); 冲大东隆起数据来自Ishizuka等(2013); 海水(×1010)数据来自Alibo等(1999); 磷块岩数据来自潘家华等(2002) Fig. 6 (a) Rare earth element patterns of volcanic rocks in the West Philippine Basin; (b) trace element patterns. Data of volcanic rocks of Benham Rise and Daito Basin are from Hickey-Vargas (1998a, b); data of volcanic rocks of Urdaneta Plateau are from Ishizuka et al (2013) and Lelikov et al (2016); data of volcanic rocks of Oki-Daito Rise are from Ishizuka et al (2013); data of seawater (×1010) from Alibo et al (1999); data of phosphorite from Pan et al (2002) |
表3 乌尔达内塔高原S1-T火山岩同位素分析测试结果Tab. 3 Isotope analysis and testing results of S1-T volcanic rocks in the Urdaneta Plateau |
同位素 | 标样同位素比值 | 本研究样品同位素比值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BCR-2 | BCR-2 | BCR-2 | BHVO-2 | BHVO-2 | BHVO-2 | S1-T-2A | S1-T-2E | S1-T-2F | S1-T-3 | S1-T-6 | |
87Sr/86Sr | 0.705015 | 0.705013 | 0.705017 | 0.703467 | 0.703483 | 0.703491 | 0.704014 | 0.703942 | 0.703979 | 0.703924 | 0.703987 |
±2σ | 0.000006 | 0.000006 | 0.000006 | 0.000006 | 0.000006 | 0.000005 | 0.000006 | 0.000006 | 0.000006 | 0.000006 | 0.000006 |
143Nd/144Nd | 0.512647 | 0.512648 | 0.512961 | 0.512983 | 0.512893 | 0.512896 | 0.512884 | 0.512893 | 0.512878 | ||
±2σ | 0.000004 | 0.000005 | 0.000005 | 0.000005 | 0.000005 | 0.000006 | 0.000003 | 0.000004 | 0.000004 | ||
208Pb/204Pb | 38.7192 | 38.2587 | 38.7709 | 38.7772 | 38.7981 | 38.7855 | 38.773 | ||||
±2σ | 0.0019 | 0.0017 | 0.0009 | 0.0012 | 0.0009 | 0.0011 | 0.0011 | ||||
207Pb/204Pb | 15.6241 | 15.536 | 15.5779 | 15.581 | 15.5863 | 15.5803 | 15.5794 | ||||
±2σ | 0.0007 | 0.0006 | 0.0004 | 0.0004 | 0.0003 | 0.0004 | 0.0004 | ||||
206Pb/204Pb | 18.7528 | 18.6681 | 18.5575 | 18.5547 | 18.5622 | 18.561 | 18.5565 | ||||
±2σ | 0.0008 | 0.0007 | 0.0004 | 0.0005 | 0.0004 | 0.0004 | 0.0005 | ||||
176Hf/177Hf | 0.282867 | 0.282871 | 0.282877 | 0.283096 | 0.283088 | 0.283079 | 0.283022 | 0.283021 | 0.283024 | 0.283023 | 0.283019 |
±2σ | 0.000005 | 0.000005 | 0.000004 | 0.000003 | 0.000005 | 0.000003 | 0.000004 | 0.000004 | 0.000004 | 0.000004 | 0.000004 |
图7 同位素相关性图解数据来源(Hickey-Vargas, 1998a, b; Pearce et al, 1999; Hickey-Vargas et al, 2005; Savov et al, 2006; Ishizuka et al, 2013; Yogodzinski et al, 2018); 绿色圆点曲线表示以WPB MORB平均值(黄色带十字圆点)为亏损组分端元加入到以446A-18-5(红色十字加粗)为富集组分端元的二元混合模拟结果, 图a、b中0.9~0.98之间每增加0.02设一个点 Fig. 7 Isotope correlation diagram. Data from Hickey-Vargas (1998a, b); Pearce et al (1999); Hickey-Vargas et al (2005); Savov et al (2006); Ishizuka et al (2013); Yogodzinski et al (2018). Green curve represents the binary mixing simulation results of adding the WPB MORB average (yellow with cross dots) as the depleted component endpoint to the enriched component endpoint with 446A-18-5 (red cross bold). In Fig. a & b, one point is set for every 0.02 increase between 0.9 and 0.98 |
图8 西菲律宾海盆 (a) LaN-(La/Sm)N; (b)P2O5-LaN; (c) (La/Sm)N-(Sm/Yb)N; (d) (Zr/Hf)N-(Nb/Zr)N相关图N代表原始地幔标准化值(Sun et al, 1989), 本哈姆隆起和大东盆地火山岩数据来源(Hickey-Vargas, 1998a, b); 乌尔达内塔高原火山岩数据来源(Ishizuka et al, 2013; Lelikov et al, 2016); 冲大东隆起数据来源(Ishizuka et al, 2013) Fig. 8 LaN-(La/Sm)N (a),P2O5-LaN (b),(La/Sm)N-(Sm/Yb)N(c),(Zr/Hf)N-(Nb/Zr)N (d) of volcanic rocks in the West Philippine Basin. N represents the primitive mantle-normalized value (Sun et al, 1989); data of volcanic rocks of Benham Rise and Daito Basin are from Hickey-Vargas (1998a, b); data of volcanic rocks of Urdaneta Plateau are from Ishizuka et al (2013); Lelikov et al (2016); data of volcanic rocks of Oki-Daito Rise are from Ishizuka et al (2013) |
[1] |
潘家华, 刘淑琴, 杨忆, 等, 2002. 西太平洋海山磷酸盐的常量、微量和稀土元素地球化学研究[J]. 地质论评, 48(5): 534-541.
|
[2] |
潘家华, 刘淑琴, 罗照华, 等, 2007. 太平洋海山磷酸盐的产状、特征及成因意义[J]. 矿床地质, 26(2): 195-203.
|
[3] |
任江波, 何高文, 姚会强, 等, 2017a. 磷酸盐化作用对富钴结壳中稀土元素的影响[J]. 海洋地质与第四纪地质, 37(2): 33-43.
|
[4] |
任江波, 韦振权, 2017b. 富稀土磷酸盐的认识及其启示[J]. 地质论评, 63(S1): 13-14.
|
[5] |
任江波, 邓希光, 邓义楠, 等, 2019. 中国富钴结壳合同区海水的稀土元素特征及其意义[J]. 地球科学, 44(10): 3529-3540.
|
[6] |
石学法, 鄢全树, 2013. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 28(7): 737-750.
|
[7] |
徐义刚, 1999. 拉张环境中的大陆玄武岩浆作用: 性质及动力学过程[M]//郑永飞. 化学地球动力学. 北京: 科学出版社:119-167(in Chinese).
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
/
〈 |
|
〉 |