[1] |
潘家华, 刘淑琴, 杨忆, 等, 2002. 西太平洋海山磷酸盐的常量、微量和稀土元素地球化学研究[J]. 地质论评, 48(5): 534-541.
|
|
PAN JIAHUA, LIU SHUQIN, YANG YI, et al, 2002. Research on geochemical characteristics of major, trace and rare-earth elements in phosphates from the west pacific seamounts[J]. Geological Review, 48(5): 534-541 (in Chinese with English abstract).
|
[2] |
潘家华, 刘淑琴, 罗照华, 等, 2007. 太平洋海山磷酸盐的产状、特征及成因意义[J]. 矿床地质, 26(2): 195-203.
|
|
PAN JIAHUA, LIU SHUQIN, LUO ZHAOHUA, et al, 2007. Modes of occurrence and characteristics of phosphorates on Pacific Guyots and their genetic significance[J]. Mineral Deposits, 26(2): 195-203 (in Chinese with English abstract).
|
[3] |
任江波, 何高文, 姚会强, 等, 2017a. 磷酸盐化作用对富钴结壳中稀土元素的影响[J]. 海洋地质与第四纪地质, 37(2): 33-43.
|
|
REN JIANGBO, HE GAOWEN, YAO HUIQIANG, et al, 2017a. The effects of phosphatization on the REY of Co-rich Fe-Mn crusts[J]. Marine Geology & Quaternary Geology, 37(2): 33-43 (in Chinese with English abstract).
|
[4] |
任江波, 韦振权, 2017b. 富稀土磷酸盐的认识及其启示[J]. 地质论评, 63(S1): 13-14.
|
|
REN JIANGBO, WEI ZHENQUAN, 2017b. The discovery and implication of REE-rich phosphate in deep-sea[J]. Geological Review, 63(S1): 13-14 (in Chinese with English abstract).
|
[5] |
任江波, 邓希光, 邓义楠, 等, 2019. 中国富钴结壳合同区海水的稀土元素特征及其意义[J]. 地球科学, 44(10): 3529-3540.
|
|
REN JIANGBO, DENG XIGUANG, DENG YINAN, et al, 2019. Rare earth element characteristics and its geological implications for seawater from cobalt-rich ferromanganese crust exploration contract area of China[J]. Earth Science, 44(10): 3529-3540 (in Chinese with English abstract).
|
[6] |
石学法, 鄢全树, 2013. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 28(7): 737-750.
doi: 10.11867/j.issn.1001-8166.2013.07.0737
|
|
SHI XUEFA, YAN QUANSHU, 2013. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific[J]. Advances in Earth Science, 28(7): 737-750 (in Chinese with English abstract).
doi: 10.11867/j.issn.1001-8166.2013.07.0737
|
[7] |
徐义刚, 1999. 拉张环境中的大陆玄武岩浆作用: 性质及动力学过程[M]//郑永飞. 化学地球动力学. 北京: 科学出版社:119-167(in Chinese).
|
[8] |
ALIBO D S, NOZAKI Y, 1999. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 63(3-4): 363-372.
|
[9] |
DESCHAMPS A, LALLEMAND S, 2002. The West Philippine Basin: an Eocene to early Oligocene back arc basin opened between two opposed subduction zones[J]. Journal of Geophysical Research: Solid Earth, 107(B12): 2322.
|
[10] |
DESCHAMPS A, SHINJO R, MATSUMOTO T, et al, 2008. Propagators and ridge jumps in a back-arc basin, the West Philippine Basin[J]. Terra Nova, 20(4): 327-332.
|
[11] |
DUPUY C, LIOTARD J M, DOSTAL J, 1992. Zr/Hf fractionation in intraplate basaltic rocks: Carbonate metasomatism in the mantle source[J]. Geochimica et Cosmochimica Acta, 56(6): 2417-2423.
|
[12] |
ELDERFIELD H, PAGETT R, 1986. Rare Earth elements in Ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment, 49: 175-197.
|
[13] |
FUJIOKA K, OKINO K, KANAMATSU T, et al, 1999. Enigmatic extinct spreading center in the West Philippine backarc basin unveiled[J]. Geology, 27(12): 1135-1138.
|
[14] |
GARCIA M O, SWINNARD L, WEIS D, et al, 2010. Petrology, geochemistry and geochronology of Kaua’i lavas over 4•5 Myr: Implications for the origin of rejuvenated volcanism and the evolution of the Hawaiian plume[J]. Journal of Petrology, 51(7): 1507-1540.
|
[15] |
HALL R, ALI J R, ANDERSON C D, et al, 1995. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 251(1-4): 229-250.
|
[16] |
HALL R, 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 20(4): 353-431.
|
[17] |
Haraguchi S., Ishii T., Kimura JI, et al. 2011. The early Miocene (-25 Ma) volcanism in the northern Kyushu-Palau Ridge, enriched mantle source injection during rifting prior to the Shikoku backarc basin opening. Contributions to Mineralogy Petrology 163, 483-504.
|
[18] |
HART R A, 1973. A model for chemical exchange in the basalt-seawater system of oceanic layer II[J]. Canadian Journal of Earth Sciences, 10 (6): 799-816.
|
[19] |
HICKEY-VARGAS R, 1991. Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate[J]. Earth and Planetary Science Letters, 107(2): 290-304.
|
[20] |
HICKEY-VARGAS R, 1998a. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: an assessment of local versus large-scale processes[J]. Journal of Geophysical Research: Solid Earth, 103(B9): 20963-20979.
|
[21] |
HICKEY-VARGAS R, 1998b. Geochemical characteristics of oceanic island basalts from the Philippine Sea Plate: Implications for the sources of east Asian plate margin and intraplate basalts[M]// FLOWERM F J, CHUNGS L, LOC H, et al. Mantle dynamics and plate interactions in East Asia. Washington: American Geophysical Union, 27: 365-384.
|
[22] |
HICKEY-VARGAS R, 2005. Basalt and tonalite from the Amami plateau, northern West Philippine Basin: new early Cretaceous ages and geochemical results, and their petrologic and tectonic implications[J]. Island Arc, 14(4): 653-665.
|
[23] |
HILDE T W C, LEE C S, 1984. Origin and evolution of the West Philippine Basin: a new interpretation[J]. Tectonophysics, 102(1-4): 85-104.
|
[24] |
ISHIZUKA O, TAYLOR R N, OHARA Y, et al, 2013. Upwelling, rifting, and age-progressive magmatism from the Oki-Daito mantle plume[J]. Geology, 41(9): 1011-1014.
|
[25] |
JARVIS I, BURNETT W C, NATHAN Y, et al, 1994. Phosphorite geochemistry: State-of-the-art and environmental concerns[J]. Eclogae Geologicae Helvetiae, 87(3): 643-700.
|
[26] |
KOSCHINSKY A, STASCHEIT A, BAU M, et al, 1997. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts[J]. Geochimica et Cosmochimica Acta, 61(19): 4079-4094.
|
[27] |
KROENKE L, et al, 1980. Initial reports of the deep sea drilling project, volume 59[R]. Washington DC: US Government Printing Office.
|
[28] |
LÉCUYER C, REYNARD B, GRANDJEAN P, 2004. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites[J]. Chemical Geology, 204(1-2): 63-102.
|
[29] |
LELIKOV E P, EMELYANOVA T A, 2016. Alkaline basaltic volcanism of the Sea of Japan and the Philippine Sea: Similar and distinct geochemical and genetic features[J]. Doklady Earth Sciences, 468(1): 433-437.
|
[30] |
LIU YUHAO, ZHANG GUOLIANG, ZHANG JI, et al, 2020. Geochemical constraints on CO2-rich mantle source for the Kocebu Seamount, Magellan Seamount chain in the western Pacific[J]. Journal of Oceanology and Limnology, 38(4): 1201-1214.
|
[31] |
YUAN LONG, YAN QUANSHU, LIU YANGUANG, et al. 2020. In Situ Geochemical Compositions of the Minerals in Basaltic Rocks from the West Philippine Basin: Constraints on Source Lithology and Magmatic Processes. Lithosphere, 2020(1): 8878501.
|
[32] |
OHARA Y, TOKUYAMA H, STERN R J, 2007. Thematic Section: Geology and geophysics of the Philippine Sea and adjacent areas in the Pacific Ocean[J]. Island Arc, 16(3): 319-321.
|
[33] |
OKINO K, FUJIOKA K, 2003. The Central Basin Spreading Center in the Philippine Sea: Structure of an extinct spreading center and implications for marginal basin formation[J]. Journal of Geophysical Research: Solid Earth, 108(B1): 2040.
|
[34] |
OKINO K, OHARA Y, KASUGA S, et al, 1999. The Philippine Sea: new survey results reveal the structure and the history of the marginal basins[J]. Geophysical Research Letters, 26(15): 2287-2290.
|
[35] |
PEARCE J A, KEMPTON P D, NOWELL G M, et al, 1999. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems[J]. Journal of Petrology, 40(11): 1579-1611.
|
[36] |
PHILLIPS E H, SIMS K W W, SHERROD D R, et al, 2016. Isotopic constraints on the Genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii[J]. Geochimica et Cosmochimica Acta, 195: 201-225.
|
[37] |
SAVOV I P, HICKEY-VARGAS R, D’ANTONIO M, et al, 2006. Petrology and geochemistry of West Philippine Basin basalts and early Palau-Kyushu arc volcanic clasts from ODP leg 195, site 1201D: implications for the early history of the Izu-Bonin-Mariana arc[J]. Journal of Petrology, 47(2): 277-299.
|
[38] |
STAUDIGEL H, HART S R, RICHARDSON S H, 1981. Alteration of the oceanic crust: processes and timing[J]. Earth and Planetary Science Letters, 52(2): 311-327.
|
[39] |
SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.
|
[40] |
TAYLOR B, GOODLIFFE A M, 2004. The West Philippine Basin and the initiation of subduction, revisited[J]. Geophysical Research Letters, 31(12): L12602.
|
[41] |
WRIGHT J, SCHRADER H, HOLSER W T, 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 51(3): 631-644.
|
[42] |
YAN QUANSHU, SHI XUEFA, 2011. Geological comparative studies of Japan arc system and Kyushu-Palau arc[J]. Acta Oceanologica Sinica, 30(4): 107-121.
|
[43] |
YIN ZHENGXIN, WANG WEIPING, CHEN LIANG, et al, 2021. Basalt from the extinct spreading center in the West Philippine Basin: New geochemical results and their petrologic and tectonic implications[J]. Minerals, 11(11): 1277.
|
[44] |
YOGODZINSKI G M, BIZIMIS M, HICKEY-VARGAS R, et al, 2018. Implications of Eocene-age Philippine Sea and forearc basalts for initiation and early history of the Izu-Bonin-Mariana arc[J]. Geochimica et Cosmochimica Acta, 228: 136-156.
|
[45] |
ZHANG GUOLIANG, SMITH-DUQUE C, 2014. Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific[J]. Geochemistry, Geophysics, Geosystems, 15(7): 3066-3080.
|
[46] |
ZHANG GUOLIANG, CHEN LIHUI, JACKSON M G, et al, 2017. Evolution of carbonated melt to alkali basalt in the South China Sea[J]. Nature Geoscience, 10(3): 229-235.
|
[47] |
ZHANG GUOLIANG, ZHANG JI, WANG SHUAI, et al, 2020. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau[J]. Chemical Geology, 540: 119566.
|
[48] |
ZHANG GUOLIANG, WANG SHUAI, HUANG SHICHUN, et al, 2022. CO2-rich rejuvenated stage lavas on Hawaiian Islands[J]. Geochemistry, Geophysics, Geosystems, 23(9): e2022GC010525.
|
[49] |
ZHANG GUOLIANG, YAO JUNHUA, XU FENG, et al, 2023. Origin of the Mussau Trench in the Western Pacific: Geochemical and mineralogical constraints from basalts and serpentinized peridotites[J]. Chemical Geology, 642: 121798.
|