海洋环境下吹填钙质粉土夹层剪切特性研究*
*感谢编辑部和审稿专家为完善本文提出的宝贵建议; 感谢课题组老师和同门的关怀和指导。
陈宾(1977—), 男, 博士, 教授, 主要从事地质灾害防治方面的研究工作。email: 403021235@qq.com |
Editor: 林强
收稿日期: 2024-02-06
修回日期: 2024-03-13
网络出版日期: 2024-03-24
基金资助
国家自然科学基金(42207227)
湖南省自然科学基金(2022JJ40586)
国家建设高水平大学公派研究生项目(202306710072)
Investigation on shear behavior of hydraulic fill calcareous silt interlayer in marine environment
Editor: LIN Qiang
Received date: 2024-02-06
Revised date: 2024-03-13
Online published: 2024-03-24
Supported by
National Natural Science Foundation of China(42207227)
Natural Science Foundation of Hunan Province, China(2022JJ40586)
China Scholarship Council(202306710072)
南海岛礁吹填工程建设中, 建筑地基土层内易形成厚度不均、间断分布的钙质粉土夹层, 目前关于钙质粉土夹层在高盐度海洋环境下的力学特性少有研究。本论文分别开展了不同水盐比下钙质粉土的直剪试验、激光粒度分析、Zeta电位分析和SEM试验。结果表明, 钙质粉土的抗剪强度和内摩擦角随水盐比的增加呈先减后增的变化趋势, 而黏聚力变化呈先增后减; 当盐溶液进入过饱和阶段, 土体抗剪强度和内摩擦角连续下降, 而黏聚力单调升高。含盐量的升高可促进颗粒发生团聚, 提高土颗粒表面电势, 但随着含盐量进一步增加, 颗粒团聚效应不再显著。进入过饱和阶段后, 盐晶体沉淀析出, 颗粒间胶结程度加强, 并以“包裹”细颗粒的形式促进颗粒接触面的润滑作用。
陈宾 , 李圆程 , 张召 , 胡杰铭 . 海洋环境下吹填钙质粉土夹层剪切特性研究*[J]. 热带海洋学报, 2024 , 43(6) : 63 -71 . DOI: 10.11978/2024037
Calcareous silt interlayer with uneven thickness and disjunct distribution, is normally generated inside the building foundation during South China Sea Island reef reclamation project. Until now, investigation on the mechanical behavior of calcareous silt soils in the high-salt sea environment are scarcely carried out. In this paper, a series of direct shear tests, laser particle size analysis, Zeta potential analysis and SEM tests were performed to study the effects of water-salt ratio on shearing behaviors of calcareous silt soils. Experimental results demonstrated that the shear strength and internal friction angle of calcareous silt firstly decreased and then increased with the increase of water-salt ratio, but the cohesive force of soils showed an opposite pattern. When entering the supersaturation stage of salt content, the shear strength and internal friction angle continuously increased with increasing water-salt ratio, while the cohesive force monotonically decreased. Microstructural test results revealed that, the increase in salt content can improve the aggregation of silty soil particles and increase the particle surface potential, but this phenomenon becomes less significant at higher salt contents. After entering the supersaturation stage, salt crystals were formed inside the soils, which could improve the bonding degree between particles and promote lubrication of particle contact surfaces by wrapping fine particles.
表1 钙质粉土基本物理性质参数Tab. 1 Basic physical parameters of calcareous slit |
参数 | 数值 |
---|---|
最大干密度ρdmax/(g·cm-3) | 1.68 |
最小干密度ρdmin/(g·cm-3) | 1.15 |
相对密实度Dr | 0.37 |
塑限Wp/% | 18.5 |
液限WL/% | 30.2 |
塑性指数Ip | 11.7 |
最优含水率Wop/% | 15.1 |
表2 不同水盐比条件下钙质粉土直剪试验方案Tab. 2 Shear test program of calcareous silt at various water-salts ratio |
土样编号 | 竖向荷载/kPa | 水盐比/% | 含盐量/g |
---|---|---|---|
CS-C0VS100 | 100 | 0 | 0 |
CS-C0VS200 | 200 | 0 | 0 |
CS-C0VS300 | 300 | 0 | 0 |
CS-C0VS400 | 400 | 0 | 0 |
CS-C3.5VS100 | 100 | 3.5 | 0.24 |
CS-C3.5VS200 | 200 | 3.5 | 0.24 |
CS-C3.5VS300 | 300 | 3.5 | 0.24 |
CS-C3.5VS400 | 400 | 3.5 | 0.24 |
CS-C10VS100 | 100 | 10.0 | 0.74 |
CS-C10VS200 | 200 | 10.0 | 0.74 |
CS-C10VS300 | 300 | 10.0 | 0.74 |
CS-C10VS400 | 400 | 10.0 | 0.74 |
CS-C15VS100 | 100 | 15.0 | 1.17 |
CS-C15VS200 | 200 | 15.0 | 1.17 |
CS-C15VS300 | 300 | 15.0 | 1.17 |
CS-C15VS400 | 400 | 15.0 | 1.17 |
CS-C20VS100 | 100 | 20.0 | 1.66 |
CS-C20VS200 | 200 | 20.0 | 1.66 |
CS-C20VS300 | 300 | 20.0 | 1.66 |
CS-C20VS400 | 400 | 20.0 | 1.66 |
CS-C25VS100 | 100 | 25.0 | 2.21 |
CS-C25VS200 | 200 | 25.0 | 2.21 |
CS-C25VS300 | 300 | 25.0 | 2.21 |
CS-C25VS400 | 400 | 25.0 | 2.21 |
CS-C30VS100 | 100 | 30.0 | 2.85 |
CS-C30VS200 | 200 | 30.0 | 2.85 |
CS-C30VS300 | 300 | 30.0 | 2.85 |
CS-C30VS400 | 400 | 30.0 | 2.85 |
图3 Cs=0条件下钙质粉土剪应力—剪切位移关系曲线Fig. 3 Evolutions of shear stress with shear displacement for calcareous silt under the condition of Cs = 0 |
图4 Cs=15%条件下钙质粉土剪应力—剪切位移关系曲线Fig. 4 Evolutions of shear stress with shear displacement for calcareous silt under the condition of Cs = 15% |
图6 钙质粉土抗剪强度随水盐比的变化关系Fig. 6 Variation of shear strength with changing water-salt ratio |
图10 不同水盐比条件下钙质粉土的粒径分布曲线Fig. 10 Variations of particle size distribution curves for calcareous silt under different water-salt ratios |
[1] |
陈宾, 邓坚, 胡杰铭, 等, 2022, 钙质砂一维蠕变分形破碎特性宏微观试验研究[J]. 岩土力学, 43(7): 1781-1790, 1853.
|
[2] |
陈炜韬, 王明年, 王鹰, 等, 2006. 含盐量及含水量对氯盐盐渍土抗剪强度参数的影响[J]. 中国铁道科学, 27(4): 1-5.
|
[3] |
谌民, 2019. 钙质粉土物理力学特性及其对钙质砂强度的弱化机理研究[D]. 南宁: 广西大学.
|
[4] |
雷学文, 丁豪, 王新志, 等, 2021. 钙质粉土的固结特性试验研究[J]. 岩土力学, 42(4): 909-920.
|
[5] |
李洪良, 樊恒辉, 党进谦, 等, 2009. 介质环境中阳离子和酸碱度变化对粘土分散性的影响[J]. 水资源与水工程学报, 20(6): 26-29.
|
[6] |
李育林, 2022. 海洋环境下硫酸盐-镁盐对砂浆中氯离子扩散影响研究[J]. 公路工程, 47(5): 150-155.
|
[7] |
卢佩霞, 徐永福, 陈志明, 等, 2015. 滨海相盐渍土强度机理分析[J]. 公路交通科技, 32(8): 51-58.
|
[8] |
吕海敏, 2016. 盐分对遗址土体性质影响探究[D]. 兰州: 兰州大学.
|
[9] |
马杰, 2022. 激光粒度分析仪在土工颗粒分析试验中的应用[J]. 土工基础, 36(3): 466-470, 496.
|
[10] |
彭昌盛, 张倩, 徐兴永, 等, 2010. 团聚-分散行为对悬浮液Zeta电位的影响[J]. 中国海洋大学学报, 40(10): 121-126.
|
[11] |
王文孟, 郭少春, 崔自治, 2014. 可溶盐对黄土触变性的作用效应研究[J]. 岩土力学, 35(12): 3385-3388, 3395.
|
[12] |
王新志, 王星, 胡明鉴, 等, 2017. 吹填人工岛地基钙质粉土夹层的渗透特性研究[J]. 岩土力学, 38(11): 3127-3135.
|
[13] |
杨德欢, 颜荣涛, 韦昌富, 等, 2016. 粉质黏土强度指标的水化学敏感性研究[J]. 岩土力学, 37(12): 3529-3536.
|
[14] |
张晨阳, 谌民, 胡明鉴, 等, 2019. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 40(S1): 195-202.
|
[15] |
张彤炜, 2018. 盐分对人工软黏土物理力学行为影响机制与本构模型[D]. 南京: 东南大学.
|
[16] |
赵续月, 颜荣涛, 梁维云, 等, 2017. 渗透吸力对饱和黏土变形-强度特性的影响[J]. 桂林理工大学学报, 37(3): 451-455.
|
[17] |
中华人民共和国住房和城乡建设部, 2019. GB/T 50123-2019 土工试验方法标准[S]. 北京: 中国计划出版社: 110-113.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2019. GB/T 50123-2019 Standard for geotechnical testing method[S]. Beijing: Beijing China Planning Publishing House: 110-113 (in Chinese with English abstract).
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
/
〈 | 〉 |