基于非静压模型数值模拟与卷积神经网络的滑坡涌浪水动力特性预测
王傲宇(1999—), 男, 湖南省常德市人, 硕士研究生, 主要从事深度学习及波浪水动力方面的研究。email: aoyuwang@stu.csust.edu.cn |
Copy editor: 殷波 , YIN Bo
收稿日期: 2024-03-27
修回日期: 2024-05-30
网络出版日期: 2024-06-13
基金资助
国家重点研发计划课题项目(2022YFC3103601)
The hydrodynamic characteristics prediction of landslide-induced surge waves based on non-hydrostatic model numerical simulation and convolutional neural network
Copy editor: YIN Bo
Received date: 2024-03-27
Revised date: 2024-05-30
Online published: 2024-06-13
Supported by
National Key Research and Development Program of China(2022YFC3103601)
海底滑坡作为一种破坏力巨大并且在全世界范围广泛分布的自然灾害, 往往会给人类的生命安全产生巨大的威胁。滑坡产生的巨大涌浪会对海洋建筑物造成严重破坏, 因此迅速预测和评估海底滑坡所能产生的涌浪大小是防灾减灾工作的关键部分, 对海洋资源的开发利用以及人民生命财产安全至关重要。文章以非静压模型(non-hydrostatic wave model, NHWAVE)进行了滑坡涌浪的数值模拟, 得到了不同滑坡产生涌浪的数据, 并以一维卷积神经网络(1-dimensional convolutional neural network, CONV1D)为基础, 训练了滑坡产生涌浪的预测模型。该模型使用了不同测点和不同类型的滑坡数据集进行训练, 并使用平均绝对误差等评价指标对卷积神经网络的预测结果进行评估。在使用少量数据集的条件下, 卷积神经网络能很好地学习到滑坡涌浪的规律, 并且对于数据集中不存在的特征也能预测得到不错的结果, 具有较好的泛化能力。模型训练好之后, 只要实时输入滑坡发生位置自由表面的水位数据, 神经网络就能在短时间内预测出未来下游测点涌浪的时程曲线。通过神经网络预测, 可以提前对灾害进行评估, 从而采取及时有效的应对措施。
王傲宇 , 屈科 , 王旭 , 高榕泽 , 门佳 . 基于非静压模型数值模拟与卷积神经网络的滑坡涌浪水动力特性预测[J]. 热带海洋学报, 2025 , 44(2) : 187 -195 . DOI: 10.11978/2024071
Submarine landslides, as a natural disaster with immense destructive potential and widespread distribution worldwide, often pose significant threats to the safety of human lives. The massive waves generated by these landslides can cause severe damage to marine structures. Therefore, rapidly predicting and assessing the size of the waves generated by underwater landslides is a crucial part of disaster prevention and mitigation efforts, essential for the development and utilization of marine resources, as well as for the safety of human lives and properties. In this study, numerical simulations of landslide-generated waves were conducted using the non-hydrostatic wave model NHWAVE (a non-hydrostatic wave model) to obtain wave data for different types of landslides. Subsequently, a CONV1D (1-dimensional convolutional neural network) was trained as the prediction model for landslide-generated waves. The model was trained using datasets for various monitoring points and different types of landslides, and evaluation metrics such as mean squared error were employed to assess the prediction performance of the convolutional neural network. The results indicate that, under the condition of using a limited amount of data, the convolutional neural network can effectively learn the patterns of landslide-generated waves. Moreover, it can predict reasonably well even for features that are not uniquely present in the dataset, demonstrating good generalization capability. Once the model is trained, inputting real-time water level data from the location of the landslide occurrence enables the neural network to predict the temporal wave profiles at downstream monitoring points in a short time. By using neural networks for prediction, it is possible to assess disasters in advance and take timely and effective response measures.
图1 数值验证计算区域布置图a. 侧视图; b. 俯视图。G1和G2(3)为测点1和测点2(3)。图a中半椭圆表示滑块侧面的形状; 图b中的椭圆表示滑块俯视的形状 Fig. 1 Computational domain for numerical validation a. Side view; b. Top view. G1 and G2 (3) are measurement points 1 and 2 (3). The semi ellipse in Figure A represents the shape of the side of the slider; The ellipse in Figure B represents the shape of the slider when viewed from above |
图2 测点1 (a)、测点2 (b)、测点3 (c)数值模拟结果验证图图中横纵坐标均进行了无量纲化处理, 纵坐标标目为表面高程(η)/滑块宽度(B), 横坐标标目为时间(t)/式(10)中的t0 Fig. 2 Validation of numerical simulation results for monitoring point1(a), point2(b) and point3(c) The horizontal and vertical coordinates in the figure have been dimensionless, with the vertical axis marked as surface elevation (η)/slider width (B), the horizontal axis is time (t) divided by t0 in equation (10) |
[1] |
戴晨, 夏非, 张永战, 等, 2015. 南黄海辐射沙脊群海域历史地震的浅地层记录[J]. 海洋地质与第四纪地质, 35(5): 77-85.
|
[2] |
高榕泽, 屈科, 任兴月, 等, 2024. 卷积神经网络方法在岛礁类海啸波水动力特性演变的应用[J]. 热带海洋学报, 43(4): 68-75.
|
[3] |
胡光海, 2010. 东海陆坡海底滑坡识别及致滑因素影响研究[D]. 青岛: 中国海洋大学.
|
[4] |
贾永刚, 单红仙, 2000. 黄河口海底斜坡不稳定性调查研究[J]. 中国地质灾害与防治学报, 11(1): 1-5.
|
[5] |
贾永刚, 王振豪, 刘晓磊, 等, 2017. 海底滑坡现场调查及原位观测方法研究进展[J]. 中国海洋大学学报, 47(10): 61-72.
|
[6] |
刘保华, 李西双, 赵月霞, 等, 2005. 冲绳海槽西部陆坡碎屑沉积物的搬运方式: 滑塌和重力流[J]. 海洋与湖沼, 36(1): 1-9.
|
[7] |
马云, 2014. 南海北部陆坡区海底滑坡特征及触发机制研究[D]. 青岛: 中国海洋大学.
|
[8] |
杨作升, 陈卫民, 陈彰榕, 等, 1994. 黄河口水下滑坡体系[J]. 海洋与湖沼, 25(6): 573-581.
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
/
〈 |
|
〉 |