收稿日期: 2009-12-03
修回日期: 2010-03-08
网络出版日期: 2011-07-20
基金资助
国家自然科学基金项目(40576041)
Calculation of design wave heights based on generalized extreme value distribution
Received date: 2009-12-03
Revised date: 2010-03-08
Online published: 2011-07-20
陈子燊 ,刘曾美 ,路剑飞 ,于吉涛 . 基于广义极值分布的设计波高推算[J]. 热带海洋学报, 2011 , 30(3) : 24 -29 . DOI: 10.11978/j.issn.1009-5470.2011.03.024
Three parameter estimation methods on generalized extreme value distribution function were briefly introduced in the paper, which included the maximum-likelihood estimation (ML), the linear moment estimation (LM) and the maximum product of spacing estimation (MPS). The design wave heights based on the generalized extreme value distribution function are calculated by using largest annual wave heights of three wave directions measured in the sea waters near Weizhou Island of Beibu Gulf. And then the results were compared by goodness fit test on design wave heights calculated by the Gumbel dis- tribution, Weibull distribution and Pearson Ⅲ. It indicated that the annual extreme wave heights obeyed the generalized ex- treme value distribution type three. The extreme wave heights were better fitted by generalized extreme value distribution function. The parameter estimation of maximum product of spacing was the best method compared with the others. The design wave heights calculated by MPS parameter estimation of the generalized extreme value distribution can be as the first refer- ence value in the coastal engineering design.
[1] 赵伟, 杨永增, 于卫东, 等. 长期极值统计理论及其在海洋环境参数统计分析中的应用[J]. 海洋科学进展, 2003, 21(4): 471-476.
[2] 中华人民共和国交通部.海港水文规范(JTJ213-98) [S]. 北京: 人民交通出版社, 1998:15.
[3] 丰鉴章. 年极值波高的分布特点及其频率曲线的选配[J].海洋学报, 1993, 15(6): 142-148.
[4] 曹兵, 王义刚. 设计波高分布函数比较[J]. 海洋湖沼通报, 2007(4): 1-9.
[5] 夏华永, 李树华. 广西沿海年极值波高分析[J]. 热带海洋学报, 2001, 20(2): 1-7.
[6] 张秀芝. Weibull分布参数估计方法及其应用[J]. 气象学报, 1996, 54(1): 108-116.
[7] 曹兵, 王义刚, YOU ZAI-JIN. 三种计算设计波高方法的比较[J]. 海洋工程, 2006, 24(4): 75-80.
[8] EDUARDO S M. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data[J]. Water Resources Research, 2000, 36(3): 737-744
[9] PRESCOTT P, WALDEN A T. Maximum-likelihood estimation of the parameters of the three-parameter generalized extreme-value distribution from censored samples[J]. J Stat Comput Simul, 1983, 6: 241-250.
[10] 金光炎. 广义极值分布及其在水文中的应用[J]. 水文, 1998(2): 9-15.
[11] 刘聪, 秦伟良, 江志红. 基于广义极值分布的设计基本风速及其置信限计算[J]. 东南大学学报: 自然科学版, 2006, 36(2): 331-334.
[12] 陈兴旺. 广义极值分布理论在重现期计算的应用[J]. 气象与减灾研究, 2008, 31(4): 52-54.
[13] FISHER R A. TIPPETT L H. Limiting forms of the frequency distribution of the largest or smallest member of a sample[J]. Proc Cambridge Philos Soc, 1928, 24: 180-190.
[14] JENKINSON A F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements[J]. Quart J Roy Meteorol Soc, 1955, 81: 158-171.
[15] COLES S. An Introduction to Statistical Modeling of Extreme Values[M]. New York: Springer Verlag, 2001: 36-78.
[16] HOSKING J R M, WALLIS J R, WOOD E F. Estimation of the generalized extreme value distribution by the method of probability-weighted moments[J]. Technometrics, 1985, 27(3): 251-261.
[17] HOSKING J R M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics[J]. Journal of the Royal Statistical Society, Series B (Methodological), 1990, 52: 105-124.
[18] CHENG R C H, AMIN N A K. Estimating parameters in continuous univariate distributions with a shifted origin[J]. Journal of the Royal Statistical Society, Series B (Methodological), 1983, 45(3): 394-403.
[19] RANNEBY B. The maximum spacing method: an estimation method related to the maximum likelihood method[J]. Scand J Statist, 1984, 11: 93-112.
[20] MAGNUS E. Alternatives to maximum likelihood estimation based on spacings and the Kullback-Leibler divergence[J]. Journal of Statistical Planning and Inference, 2008, 138: 1778-1791.
/
〈 | 〉 |