海洋生物学

不同蛋白源对军曹鱼幼鱼碳、氮稳定同位素分馏的影响

  • 周晖 ,
  • 陈刚 ,
  • 施钢 ,
  • 张健东 ,
  • 董晓慧
展开
  • 1.广东海洋大学水产学院, 广东 湛江524025; 2.广东省普通高校南海水产经济动物增养殖重点实验室, 广东 湛江 524025
作者简介:周晖(1978~), 男, 广西玉林市人, 讲师, 硕士, 主要从事鱼类生理生态学研究。Tel: 13421718683; E-mail: 346005548@qq.com

收稿日期: 2013-06-24

  修回日期: 2013-09-20

  网络出版日期: 2014-09-29

基金资助

国家海洋公益性行业科研专项(201205028); 广东省海洋经济创新发展区域示范专项(GD2012-A01-007); 广东省科技计划项目(2009B020308005、2010B080203044、2011B020307012); 广东省海洋与渔业科技项目(A2009-08D03、A2010-08D04); 广东海洋大学2008年校选项目(0812068)

The effects of different diet protein sources on carbon and nitrogen isotope fractionation of juvenile cobia Rachycentron canadum L.

  • ZHOU Hui ,
  • CHEN Gang ,
  • SHI Gang ,
  • ZHANG Jian-dong ,
  • DONG Xiao-hui
Expand
  • 1. Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; 2. Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal, Regular High Education Institute of Guangdong Province, Zhanjiang 524025, China

Received date: 2013-06-24

  Revised date: 2013-09-20

  Online published: 2014-09-29

摘要

为研究饲料中不同蛋白源对军曹鱼幼鱼碳、氮稳定同位素分馏的影响, 配制3种等氮等能饲料。D1以鱼粉为蛋白源, D2和D3饲料中分别以啤酒酵母和玉米蛋白替代10%的鱼粉蛋白, 投喂幼鱼24d。结果表明, 啤酒酵母和玉米蛋白替代10%的鱼粉蛋白后, 幼鱼的体质量增加率显著下降。随养殖时间的延长, 所有处理组幼鱼的碳稳定同位素比率δ13C逐渐上升而氮稳定同位素比率δ15N逐渐下降; 虽然全鱼和肌肉δ15N的变化速度存在差异, 但各饲料组全鱼和肌肉的δ13C和δ15N都在24d后与饲料达到平衡。当饲料中10%的鱼粉蛋白被啤酒酵母和玉米蛋白替代之后, 幼鱼肌肉和全鱼样品与饲料相比的碳同位素富集Δ13C值下降, 而氮同位素富集Δ15N值则上升。其中全鱼Δ13C从4.19‰分别下降到3.94‰和3.63‰, 肌肉Δ13C从4.46‰分别下降到3.98‰和3.67‰; 全鱼Δ15N从0.18‰分别增加到0.88‰和0.94‰, 肌肉Δ15N从0.18‰分别增加到0.74‰和0.87‰。军曹鱼在摄食3种不同蛋白源饲料时, 其全鱼和肌肉的Δ13C和Δ15N的变化趋势相似, 但全鱼δ15N的变化速度慢于肌肉。据此可推断, 肌肉可在生态学营养级研究(长时间尺度)中代表军曹鱼的碳、氮同位素特征; 但在代谢生理学研究中(短时间尺度), 肌肉就无法准确反映军曹鱼全鱼的δ15N变化过程。

本文引用格式

周晖 , 陈刚 , 施钢 , 张健东 , 董晓慧 . 不同蛋白源对军曹鱼幼鱼碳、氮稳定同位素分馏的影响[J]. 热带海洋学报, 2014 , 33(5) : 35 -40 . DOI: 10.11978/j.issn.1009-5470.2014.05.005

Abstract

In order to investigate the effects of different diet protein sources on carbon and nitrogen isotope fractionation of juvenile cobia Rachycentron canadum L., three isonitrogenous and isocaloric diets were formulated. The protein source in D1 was fish meal; beer yeast meal and corn gluten meal protein replaced 10% fish meal in D2 and D3, respectively. The diets were fed to juvenile cobia for 24 days. The results showed that, when 10% fish meal was replaced, the weight gain rate (WGR) of cobia decreased significantly. The carbon isotope ratio δ13C of cobia increased in time and nitrogen isotope ratio δ15N decreased in time in all groups. Although the change speeds of δ15N were different, the whole fish and muscle of cobia fed with different diets reached isotope equilibrium states with their diets when the feeding experiment was accomplished. When 10% fish meal was replaced by beer yeast meal (corn gluten meal) protein, the carbon isotope fractionation Δ13C decreased while nitrogen isotope fractionation Δ15N increased in the whole fish and muscle of cobia; Δ13C of the whole fish decreased from 4.19‰ to 3.94‰ and 3.63‰, Δ13C of the muscle decreased from 4.46‰ to 3.98‰ (to 3.67‰), and Δ15N of the whole fish increased from 0.18‰ to 0.88‰ (to 0.94‰), Δ15N of the muscle increased from 0.18‰ to 0.74‰ (to 0.87‰). When the three diets with different protein sources were fed, the variation trends of Δ13C and Δ15N were similar between whole fish and muscle of cobia, but the change speed of whole fish δ15N was slower than that of muscle. These results indicated that cobia muscle can represent the δ13C and δ15N characters of whole fish in trophic level study of ecosystem (long time scale), but cannot represent the change process of whole fish δ15N in metabolic physiology study (short time scale).

参考文献

[1] 张淑芳, 唐启升, 等. 2003. 鲈鱼新陈代谢过程中的碳氮稳定同位素分馏作用[J]. 海洋科学进展, 21(3): 308–317.
[2] 李忠义, 金显仕, 等. 2007. 采用碳氮稳定同位素技术对黄海中南部鳀鱼食性的研究[J]. 海洋学报: 中文版, 29(2): 98–104.
[3] 左涛, 戴芳群, 等. 2009. 长江口及南黄海水域春季生物摄食生态的稳定同位素研究[J]. 水产学报, 33(5): 784–789.
[4] 欧帆, 颜云榕. 2009. 应用氮稳定同位素技术对雷州湾海域主要鱼类营养级的研究[J]. 海洋学报: 中文版, 31(3): 167–174.
[5] 陈刚, 林小涛. 2012. 三种蛋白源部分替代鱼粉对军曹鱼幼鱼生长和体成分的影响[J]. 水产科学, 31(6): 311–315.
[6] R K, PARKER P L, LAWRENCE A A. 1987. 13 C/ 12 C tracer study of the utilization of presented feed by a commercially important shrimp Penaeus vannamei in a pond growout system [J]. J World Aquacult Soc, 18(3): 148–155.
[7] A, LATOUR R J. 2010. Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder ( Paralichthys dentatus ) [J]. Can J Fish Aquat Sci, 67(3): 445–461.
[8] M J, EPSTEIN S. 1978. Influence of diet on the distribution of carbon isotope ratios in animals [J]. Geochim Cosmochim Acta, 42: 495–506.
[9] M J, EPSTEIN S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals [J]. Geochim Cosmochim Acta, 45: 341–351.
[10] B, ARNOLD C. 1982. Rapid 13 C/ 12 C turnover during growth of brown shrimp ( Penaeus aztecus ) [J]. Oecologia, 54(2): 200–204.
[11] B. 2006. Stable isotope ecology [M]. New York: Springer Science: 196.GAMBOA-DELGADO J, CAÑAVATE J P, ZEROLO R, et al. 2008. Natural carbon stable isotope ratios as indicators of the relative contribution of live and inert diets to growth in larval Senegalese sole ( Solea senegalensis ) [J]. Aquaculture, 280(1): 190–197.
[12] J, LEWIS L V. 2009. Natural stable isotopes as indicators of the relative contribution of soy protein and fish meal to tissue growth in Pacific white shrimp ( Litopenaeus vannamei ) fed compound diets [J]. Aquaculture, 291 (1/2): 115–123.
[13] R H, HALLARD K A, RAMLAL P. 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish ( Coregonus nasus ) in response to a change in diet traced by 34 S, 13 C, and 15 N [J]. Can J Fish Aquat Sci, 50(10): 2071–2076.
[14] K A, CLARK R G. 1992. Assessing avian diets using stable isotopes 1: Turnover of 13 C in tissues [J]. Condor, 94(1): 181–188.
[15] DEL RIO C, WOLF B O. 2005. Mass-balance models for animal isotopic ecology [M]//STARCK J M, WANG T. Physiological and ecological adaptations to feeding in vertebrates. Enfield: Science Publishers: 141–174.
[16] B J, FRY B. 1987. Stable isotopes in ecosystem studies [J]. Ann Rev Ecol Syst, 18: 293–320.
[17] A J, KAREN A B, ALAN B B. 2007. Stable carbon and nitrogen isotope discrimination and turnover in pond sliders Trachemys scripta : Insights for trophic study of freshwater turtles [J]. Copeia, (3): 534–542.
[18] KW, KASAI A, NAKAYAMA K, et al. 2005. Differential isotopic enrichment and half-life among tissues in Japanese temperate bass ( Lateolabrax japonicus ) juveniles: Implica-tions for analyzing migration [J]. Can J Fish Aquat Sci, 62(3): 671–678.
[19] C, BARRY J, BARNES C, et al. 2007. Effects of body size and environment on diet-tissue δ 15 N fractionation in fishes [J]. J Exp Mar Biol Ecol, 340(1): 1–10.
[20] DER ZANDEN M J, HULSHOF M, RIDGWAY M S, et al. 1998. Application of stable isotope techniques to trophic studies of age-0 smallmouth bass [J]. Trans Am Fish Soc, 127(5): 729–739.
[21] Y, DAMIEN B, MARIELLE T, et al. 2007. Stable isotope variability in tissues of the Eurasian perch Perca fluviatilis [J]. Comp Biochem Phys, 148(3): 504–509.
文章导航

/