[1] 张淑芳, 唐启升, 等. 2003. 鲈鱼新陈代谢过程中的碳氮稳定同位素分馏作用[J]. 海洋科学进展, 21(3): 308–317. [2] 李忠义, 金显仕, 等. 2007. 采用碳氮稳定同位素技术对黄海中南部鳀鱼食性的研究[J]. 海洋学报: 中文版, 29(2): 98–104. [3] 左涛, 戴芳群, 等. 2009. 长江口及南黄海水域春季生物摄食生态的稳定同位素研究[J]. 水产学报, 33(5): 784–789. [4] 欧帆, 颜云榕. 2009. 应用氮稳定同位素技术对雷州湾海域主要鱼类营养级的研究[J]. 海洋学报: 中文版, 31(3): 167–174. [5] 陈刚, 林小涛. 2012. 三种蛋白源部分替代鱼粉对军曹鱼幼鱼生长和体成分的影响[J]. 水产科学, 31(6): 311–315. [6] R K, PARKER P L, LAWRENCE A A. 1987. 13 C/ 12 C tracer study of the utilization of presented feed by a commercially important shrimp Penaeus vannamei in a pond growout system [J]. J World Aquacult Soc, 18(3): 148–155. [7] A, LATOUR R J. 2010. Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder ( Paralichthys dentatus ) [J]. Can J Fish Aquat Sci, 67(3): 445–461. [8] M J, EPSTEIN S. 1978. Influence of diet on the distribution of carbon isotope ratios in animals [J]. Geochim Cosmochim Acta, 42: 495–506. [9] M J, EPSTEIN S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals [J]. Geochim Cosmochim Acta, 45: 341–351. [10] B, ARNOLD C. 1982. Rapid 13 C/ 12 C turnover during growth of brown shrimp ( Penaeus aztecus ) [J]. Oecologia, 54(2): 200–204. [11] B. 2006. Stable isotope ecology [M]. New York: Springer Science: 196.GAMBOA-DELGADO J, CAÑAVATE J P, ZEROLO R, et al. 2008. Natural carbon stable isotope ratios as indicators of the relative contribution of live and inert diets to growth in larval Senegalese sole ( Solea senegalensis ) [J]. Aquaculture, 280(1): 190–197. [12] J, LEWIS L V. 2009. Natural stable isotopes as indicators of the relative contribution of soy protein and fish meal to tissue growth in Pacific white shrimp ( Litopenaeus vannamei ) fed compound diets [J]. Aquaculture, 291 (1/2): 115–123. [13] R H, HALLARD K A, RAMLAL P. 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish ( Coregonus nasus ) in response to a change in diet traced by 34 S, 13 C, and 15 N [J]. Can J Fish Aquat Sci, 50(10): 2071–2076. [14] K A, CLARK R G. 1992. Assessing avian diets using stable isotopes 1: Turnover of 13 C in tissues [J]. Condor, 94(1): 181–188. [15] DEL RIO C, WOLF B O. 2005. Mass-balance models for animal isotopic ecology [M]//STARCK J M, WANG T. Physiological and ecological adaptations to feeding in vertebrates. Enfield: Science Publishers: 141–174. [16] B J, FRY B. 1987. Stable isotopes in ecosystem studies [J]. Ann Rev Ecol Syst, 18: 293–320. [17] A J, KAREN A B, ALAN B B. 2007. Stable carbon and nitrogen isotope discrimination and turnover in pond sliders Trachemys scripta : Insights for trophic study of freshwater turtles [J]. Copeia, (3): 534–542. [18] KW, KASAI A, NAKAYAMA K, et al. 2005. Differential isotopic enrichment and half-life among tissues in Japanese temperate bass ( Lateolabrax japonicus ) juveniles: Implica-tions for analyzing migration [J]. Can J Fish Aquat Sci, 62(3): 671–678. [19] C, BARRY J, BARNES C, et al. 2007. Effects of body size and environment on diet-tissue δ 15 N fractionation in fishes [J]. J Exp Mar Biol Ecol, 340(1): 1–10. [20] DER ZANDEN M J, HULSHOF M, RIDGWAY M S, et al. 1998. Application of stable isotope techniques to trophic studies of age-0 smallmouth bass [J]. Trans Am Fish Soc, 127(5): 729–739. [21] Y, DAMIEN B, MARIELLE T, et al. 2007. Stable isotope variability in tissues of the Eurasian perch Perca fluviatilis [J]. Comp Biochem Phys, 148(3): 504–509. |