文章根据三亚湾和台山广海湾实测水位数据, 分析了2010年智利和2011年日本海啸在中国近岸传播的海啸波形。通过与2个深海海啸观测浮标(DART)观测到的海啸波形对照, 采用功率谱分析和小波分析技术, 研究远场海啸在中国华南沿岸的海啸波特征和传播规律。在2次事件中, 海啸波通过巴士海峡进入中国南海后, 大约3~4h到达华南沿岸。地形效应是决定海啸波能量的重要因素, 特定周期的海啸波得到选择性增强。海啸波在近岸海湾持续时间长达2~3d, 海啸波周期越长, 持续时间越久。2次海啸事件均未对我国沿海造成灾害性影响, 但是通过海啸波形的对比分析, 能够更好地了解南海北部地形对海啸波的响应特征, 为防范海啸提供借鉴。
In this study we analyzed the sea level data from two pressure-based gauges in Sanya Bay and Guanghai Bay of Taishan to investigate the tsunami waveforms of two major tsunamis, the 2010 Chile and the 2011 Japan events. With the sea level data from two deep-ocean assessment and reporting of tsunamis (DART) stations, we focused on the far-field characteristics of tsunami waves on the coast of South China. Fourier power spectrum and wavelet analysis were used to describe the timing and spectral content of the tsunami signals. The tsunami waves of both events arrived at the coast of South China in 3~4 hours after entering the Bashi Channel. The similarities and differences between the tsunami signals of the two events were then compared to highlight the tsunami response characteristics of local topography. Spectral content of certain periods were amplified during tsunami transformation and evolution. Tsunami waves can oscillate, lasting for over 2~3 days in the bays with signals of longer period having longer duration. Though these two tsunami events did not pose disastrous impact on our coast, this study provides a comprehensive analysis of far-field tsunami characteristics on the coast of South China and will be of value for future tsunami hazard assessment.
[1] 马继瑞, 付世杰. 1989. 最大熵谱分析中的置信区间估计和显著性周期检验方法[J]. 海洋通报, 8: 75-80.
[2] 王培涛, 于福江, 赵联大, 等. 2012. 2011年3月11日日本地震海啸越洋传播及对中国影响的数值分析[J]. 地球物理学报, 55: 3088-3096.
[3] 谢燕双, 商少平, 魏艳, 等. 2012. 2010 年智利强震引发的海啸对台湾周边海域的影响[J]. 厦门大学学报: 自然科学版, 51: 898-902.
[4] 叶琳, 于福江, 吴玮. 2005. 我国海啸灾害及预警现状与建议[J]. 海洋预报, 22: 147-157.
[5] 于福江, 原野, 赵联大, 等. 2011. 2010年2月27日智利8.8级地震海啸对我国影响分析[J]. 科学通报, 56: 239-246.
[6] BORRERO J C, GREER S D. 2013. Comparison of the 2010 Chile and 2011 Japan tsunamis in the far field[J]. Pure and Applied Geophysics, 170: 1-26.
[7] DRAGANI W C, D’ONOFRIO E E, GRISMEYER W, et al. 2006. Tide gauge observations of the Indian ocean tsunami, December 26, 2004, in Buenos Aires coastal waters, Argentina[J]. Continental Shelf Research, 26: 1543-1550.
[8] HEIDARZADEH M, SATAKE K. 2013. Waveform and spectral analyses of the 2011 Japan tsunami records on tide gauge and
[9] DART stations across the Pacific Ocean[J]. Pure and Applied Geophysics, 170: 1275-1293.
[10] LIU P L F, WOO S B, CHO Y S. 2007. COMCOT User Manual Version 1.6[R]. New York: Cornell University: 1-23.
[11] MCMURTRY G M, WATTS P, FRYER G J, et al. 2004. Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands[J]. Marine Geology, 203: 219-233.
[12] MERRIFIELD M A, FIRING Y L, AARUP T, et al. 2005. Tide gauge observations of the Indian Ocean tsunami, December 26, 2004[J]. Geophysical Research Letters, 32: L09603.
[13] RABINOVICH A B. 1997. Spectral analysis of tsunami waves: separation of source and topography effects[J]. Journal of Geophysical Research: Oceans, 102: 12663-12676.
[14] RABINOVICH A B, THOMSON R E. 2007. The 26 December 2004 Sumatra tsunami: analysis of tide gauge data from the World Ocean Part 1: Indian Ocean and South Africa[J]. Pure and Applied Geophysics, 164: 261-308.
[15] TITOV V, RABINOVICH A B, MOFJELD H O, et al. 2005. The global reach of the 26 December 2004 Sumatra tsunami[J]. Science, 309: 2045-2048.