天然气水合物稳定带内流体压裂计算的程序耦合方法
刘金龙(1987—), 男, 山东省德州市人, 博士研究生, 主要从事海洋天然气水合物研究。E-mail: liujinlong@scsio.ac.cn |
Copy editor: 孙淑杰
收稿日期: 2019-05-13
要求修回日期: 2019-05-18
网络出版日期: 2020-01-09
基金资助
国家自然科学基金项目(41176052)
国家自然科学基金项目(41576035)
国家自然科学基金项目(41276050)
南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory Guangzhou)
广东省自然科学基金面上项目(Natural Science Foundation of Guangdong Province)
中国科学院南海生态环境工程创新研究院创新发展基金项目(the Innovation Development Fund of South China Sea Eco-Environmental Engineering Innovation Institute of the Chinese Academy of Sciences)
the U.S. Department of Energy(the U.S. Department of Energy)
版权
Codes coupling method for simulating hydraulic fracturing within the gas hydrate stability zone
Received date: 2019-05-13
Request revised date: 2019-05-18
Online published: 2020-01-09
Supported by
National Natural Science Foundation of China(41176052)
National Natural Science Foundation of China(41576035)
National Natural Science Foundation of China(41276050)
Copyright
海洋天然气水合物稳定带气烟囱结构中存在被水合物充填的裂隙, 表明在自然条件下沉积物中曾发生过流体压裂以及相关的流体流动和水合物形成。在水合物稳定带内实施人为的流体压裂工程, 并联合其他方法(如降压或注热)进行水合物开采, 有望提高开采效率。水合物稳定带内, 无论是自然条件下发生的流体压裂过程, 还是人为实施的流体压裂工程, 都存在水合物反应和沉积物裂隙变形之间的耦合响应。当前, 已有不少数值程序对水合物反应与沉积物弹塑性变形的耦合过程进行了定量研究, 但尚没有数值程序能够计算水合物反应和离散裂隙变形之间的耦合过程。文章将TOUGH+Hydrate程序、IC-FERST和Solidity两者的耦合程序进行了进一步耦合, 为水合物稳定带内的流体压裂计算提供了一种耦合计算方法, 同时通过一个算例初步验证了该耦合计算方法的可行性。验证结果表明, 该耦合计算方法经进一步改进后有望应用于定量研究水合物稳定带内的裂隙变形和水合物反应过程。
刘金龙 , 王淑红 , AsiriObeysekara , XIANGJiansheng , PabloSalinas , ChristopherPain , JonnyRutqvist , 颜文 . 天然气水合物稳定带内流体压裂计算的程序耦合方法[J]. 热带海洋学报, 2020 , 39(1) : 94 -105 . DOI: 10.11978/2019048
Hydrates-filled discrete fractures have been observed within the gas chimney structure in marine gas hydrate stability zone worldwide. It indicates that naturally hydraulic fracturing process and stimulated fluid flow have occurred in the gas hydrate stability zone. Gas production can benefit from artificially hydraulic fracturing within the methane hydrate reservoir. There can be a change in fracture aperture during the gas production from the methane hydrate reservoir. In return, the evolution of the fracture network has effects on the gas production process. While quite a few researchers have developed codes for modelling the coupled process between hydrate dissociation and elastoplastic deformation, currently there is no numerical tool to investigate the coupled process between fracture network evolution and gas production. Here, we couple TOUGH+Hydrate codes with the already coupled IC-FERST and Solidity codes in order to simulate the hydraulic fracturing process within the gas hydrate stability zone. We run an example in which the pressure around a borehole will be increased to create hydraulic fracturing within the gas hydrate stability zone. The coupling method, with additional improvements in the future, can be used to simulate the coupled process between fracture network evolution and gas production.
Key words: gas hydrate; hydraulic fracturing; numerical tool; coupling method
图1 Ulleung盆地(UBGH1)海洋沉积物样品中被水合物充填的离散裂隙(Park et al, 2008)Fig. 1 Hydrates-filled fractures in marine sediments in the Ulleung Basin (UBGH1), East Sea (Park et al, 2008) |
图2 I型裂隙前缘的各变形区a. 应力-位移关系; b. 张性裂隙前缘的弹性、塑性和离散裂隙区(Yang et al, 2017) Fig. 2 Different zones in a single mode I fracture tip. (a) the relationship between stress and displacement; (b) the elastic, plastic and discrete fracture zone in a single mode I tensile fracture tip (from Yang et al, 2017) |
表1 模型物理参数Tab. 1 Physical model parameters |
参数名称 | 数值 | 参考文献 |
---|---|---|
沉积物颗粒的密度/($\text{kg}\cdot {{\text{m}}^{-\text{3}}}$) | 2650 | Garg et al, 2008 |
甲烷在孔隙水中的扩散系数/(${{\text{m}}^{\text{2}}}\cdot {{\text{s}}^{-\text{1}}}$) | $\text{1}{{\text{0}}^{-\text{9}}}$ | Garg et al, 2008 |
盐离子在孔隙水中的扩散系数/(${{\text{m}}^{\text{2}}}\cdot {{\text{s}}^{-\text{1}}}$) | $\text{1}{{\text{0}}^{-\text{9}}}$ | Garg et al, 2008 |
沉积物颗粒的半径/m | $\text{1}\text{.48}\times \text{1}{{\text{0}}^{-\text{6}}}$ | Gràcia et al, 2005 |
沉积物压缩系数/$\text{P}{{\text{a}}^{-1}}$ | ${{10}^{-8}}$ | Rutqvist et al, 2009 |
热膨胀系数/${{\text{K}}^{-1}}$ | 0.0 |
表2 热导率、毛细管压力和相对渗透率方程及参数Tab. 2 Model equations and parameterizations for thermal conductivity, capillary pressure and relative permeability |
方程或参数名称 | 表达式或数值 | 参考文献 |
---|---|---|
沉积物热导率模型 | $\begin{align} & {{K}_{\Theta }}=\left( 1-{{\phi }_{0}} \right){{K}_{\text{dry}}}+ \\ & {{\phi }_{0}}\left( {{S}_{\text{a}}}{{K}_{\text{a}}}+{{S}_{\text{h}}}{{K}_{\text{h}}}+{{S}_{\text{g}}}{{K}_{\text{g}}} \right) \\ \end{align}$ | Liu et al, 2007; Smith et al, 2014; Gupta et al, 2015 |
沉积物颗粒的热导率${{K}_{\text{dry}}}$/($\text{W}\cdot {{\text{m}}^{-\text{1}}}\cdot {{\text{K}}^{-\text{1}}}$) | 3.61 | |
因水合物存在而引起的渗透率降低模型 | ${{k}_{\text{rS}}}={{\left[ \frac{{{\phi }_{0}}\left( 1-{{S}_{\text{h}}} \right)-{{\phi }_{\text{c}}}}{{{\phi }_{0}}-{{\phi }_{\text{c}}}} \right]}^{{{n}_{\text{H}}}}}$ | Moridis et al, 2008; Stone, 1970 |
基质沉积物中的临界孔隙度${{\phi }_{\text{c}}}$ | 0.01 | |
裂隙中的临界孔隙度${{\phi }_{\text{c}}}$ | 0.0 | |
基质沉积物中的渗透率降低指数${{n}_{\text{H}}}$ | 11.1 | Kossel et al, 2018 |
裂隙中的渗透率降低指数${{n}_{\text{H}}}$ | 3.0 | |
存在水合物时的毛细管压力模型 | ${{P}_{\text{cap}}}=\sqrt{\frac{1-{{S}_{\text{h}}}}{{{k}_{\text{rS}}}}}{{P}_{\text{cap,00}}}$ | Moridis et al, 2008 |
不存在水合物时的毛细管压力模型 (Van Genuchten模型) | ${{P}_{\text{cap,00}}}=-{{P}_{0}}{{\left[ {{\left( {{S}^{*}} \right)}^{-{1}/{\lambda }\;}}-1 \right]}^{1-\lambda }}$ ${{S}^{*}}={\left( {{S}_{\text{a}}}-{{S}_{\text{irA}}} \right)}/{\left( {{S}_{\text{mxA}}}-{{S}_{\text{irA}}} \right)}\;$ | Moridis et al, 2008; Van Genuchten, 1980 |
Van Genuchten指数$\lambda$ | 0.45 | Rutqvist et al, 2009 |
基质沉积物中的毛细管入口压力${{P}_{0}}$/Pa | $2.3\times {{10}^{5}}$ | Liu et al, 2011 |
裂隙中的${{P}_{0}}$/Pa | 144 | Daigle et al, 2011; Pruess et al, 1990 |
基质沉积物中的残余孔隙水饱和度${{S}_{\text{irA}}}$ | 0.19 | |
裂隙中的${{S}_{\text{irA}}}$ | 0.09 | |
最大孔隙水饱和度${{S}_{\text{mxA}}}$ | 1.0 | Rutqvist et al , 2009 |
基质沉积物中的最大毛细管压力${{P}_{\text{cap,mx}}}$/Pa | $6.5\times {{10}^{7}}$ | Liu et al, 2011 |
裂隙中的${{P}_{\text{cap,mx}}}$/Pa | $5.0\times {{10}^{7}}$ | |
相对渗透率模型 (Modified Stone’s模型) | ${{k}_{\text{rA}}}={{\left[ {\left( {{S}_{\text{a}}}-{{S}_{\text{irA}}} \right)}/{\left( 1-{{S}_{\text{irA}}} \right)}\; \right]}^{n}}$ ${{k}_{\text{rG}}}={{\left[ {\left( {{S}_{\text{g}}}-{{S}_{\text{irG}}} \right)}/{\left( 1-{{S}_{\text{irA}}} \right)}\; \right]}^{n}}$ | Moridis et al, 2008 |
基质沉积物中的残余孔隙水饱和度${{S}_{\text{irA}}}$ | 0.20 | Rutqvist et al, 2009 |
裂隙中的${{S}_{\text{irA}}}$ | 0.10 | |
基质沉积物中的残余气体饱和度${{S}_{\text{irG}}}$ | 0.02 | Liu et al, 2007; Rutqvist et al, 2009 |
裂隙中的${{S}_{\text{irG}}}$ | 0.01 | |
相对渗透率指数n | 3.57 | Rutqvist et al, 2009 |
表3 裂隙计算中使用的沉积物力学参数Tab. 3 Sediment properties or parameters used in Solidity codes |
参数 | 数值 |
---|---|
黏聚力/MPa | 1.06 |
内摩擦系数 | 0.76 |
联接摩擦系数 | 0.76 |
拉伸强度/MPa | 1.0 |
模型I的能量释放率/($\text{J}\cdot {{\text{m}}^{-\text{2}}}$) | 1.0 |
模型II的能量释放率/($\text{J}\cdot {{\text{m}}^{-\text{2}}}$) | 10.0 |
质量系数 | 300 |
第一拉梅常数λ | $2.31\times {{10}^{9}}$ |
第二拉梅常数μ | $1.538\times {{10}^{9}}$ |
弹性惩罚因子 | $4.0\times {{10}^{9}}$ |
接触惩罚因子 | $4.0\times {{10}^{8}}$ |
界面摩擦系数 | 0.76 |
最大拉伸强度/MPa | 1000 |
实验尺度的联接粗糙度系数 | 15 |
实验尺度的联接压缩强度/MPa | 120 |
联接样本长度/m | 0.2 |
[1] |
卢静生, 李栋梁, 何勇 , 等, 2017. 天然气水合物开采过程中出砂研究现状[J]. 新能源进展, 5(5):394-402.
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
/
〈 |
|
〉 |