[1] |
卢静生, 李栋梁, 何勇 , 等, 2017. 天然气水合物开采过程中出砂研究现状[J]. 新能源进展, 5(5):394-402.
|
|
LU JINGSHENG, LI DONGLIANG, HE YONG , et al, 2017. Research status of sand production during the gas hydrate exploitation process[J]. Advances in New and Renewable Energy, 5(5):394-402 (in Chinese with English abstract).
|
[2] |
ASADOLLAHI P, INVERNIZZI M C A, ADDOTTO S , et al, 2010. Experimental validation of modified Barton’s model for rock fractures[J]. Rock Mechanics and Rock Engineering, 43(5):597-613.
doi: 10.1007/s00603-010-0085-6
|
[3] |
DAIGLE H, BANGS N L, DUGAN B , 2011. Transient hydraulic fracturing and gas release in methane hydrate settings: A case study from southern Hydrate Ridge[J]. Geochemistry, Geophysics, Geosystems, 12(12):1-15.
|
[4] |
DAVIE M K, BUFFETT B A , 2001. A numerical model for the formation of gas hydrate below the seafloor[J]. Journal of Geophysical Research: Solid Earth, 106(B1):497-514.
|
[5] |
DAVIE M K, BUFFETT B A , 2003. A steady state model for marine hydrate formation: constraints on methane supply from pore water sulfate profiles[J]. Journal of Geophysical Research: Solid Earth, 108(B10):2495.
|
[6] |
DUGDALE D S , 1960. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 8(2):100-104.
doi: 10.1016/0022-5096(60)90013-2
|
[7] |
FARRELL P E, MADDISON J R , 2011. Conservative interpolation between volume meshes by local Galerkin projection[J]. Computer Methods in Applied Mechanics and Engineering, 200(1-4):89-100.
doi: 10.1016/j.cma.2010.07.015
|
[8] |
FARRELL P E, PIGGOTT M D, PAIN C C , et al, 2009. Conservative interpolation between unstructured meshes via supermesh construction[J]. Computer Methods in Applied Mechanics and Engineering, 198(33-36):2632-2642.
doi: 10.1016/j.cma.2009.03.004
|
[9] |
FENG YONGCHANG, CHEN LIN, SUZUKI A , et al, 2019. Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method[J]. Energy Conversion and Management, 184:194-204.
doi: 10.1016/j.enconman.2019.01.050
|
[10] |
GARG S K, PRITCHETT J W, KATOH A , et al, 2008. A mathematical model for the formation and dissociation of methane hydrates in the marine environment[J]. Journal of Geophysical Research: Solid Earth, 113(B1):B01201.
|
[11] |
GRÀCIA E, MARTÍNEZ-RUIZ F, PIÑERO E , et al, 2005. Data report: Grain-size and bulk and clay mineralogy of sediments from the summit and flanks of southern Hydrate Ridge, Sites 1244-1250, ODP Leg 204[M] //TRÉHU A M, BOHRMANN G, TORRES M E, et al. Proceedings of the ocean drilling program, scientific results volume 204. College Station, TX: Ocean Drilling Program: 1-19.
|
[12] |
GUO LIWEI, LATHAM J P, XIANG JIANSHENG , 2015. Numerical simulation of breakages of concrete armour units using a three-dimensional fracture model in the context of the combined finite-discrete element method[J]. Computers & Structures, 146:117-142.
doi: 10.1371/journal.pone.0226611
pmid: 31910214
|
[13] |
GUPTA S, DEUSNER C, HAECKEL M , et al, 2017. Testing a thermo-chemo-hydro-geomechanical model for gas hydrate-bearing sediments using triaxial compression laboratory experiments[J]. Geochemistry, Geophysics, Geosystems, 18(9):3419-3437.
doi: 10.1002/ggge.v18.9
|
[14] |
GUPTA S, HELMIG R, WOHLMUTH B , 2015. Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs[J]. Computational Geosciences, 19(5):1063-1088.
doi: 10.1007/s10596-015-9520-9
|
[15] |
GUPTA S, WOHLMUTH B, HELMIG R , 2016. Multi-rate time stepping schemes for hydro-geomechanical model for subsurface methane hydrate reservoirs[J]. Advances in Water Resources, 91:78-87.
doi: 10.1016/j.advwatres.2016.02.013
|
[16] |
HAUKWA C B , 1998. AMESH—a mesh creating program for the integral finite difference method: a user's manual[R]. Report LBNL-45284. Berkeley, California: Lawrence Berkeley National Laboratory: 1-52.
|
[17] |
ITO T, IGARASHI A, SUZUKI K, et al, 2008. Laboratory study of hydraulic fracturing behavior in unconsolidated sands for methane hydrate production [C]//Offshore technology conference. Houston, Texas, USA: Offshore Technology Conference: 1-8.
|
[18] |
KIM J, YANG D, MORIDIS G J, et al, 2012. Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits [C]//SPE reservoir simulation symposium. The Woodlands, Texas, USA: Society of Petroleum Engineers: 485-501.
|
[19] |
KIMOTO S, OKA F, FUSHITA T , 2010. A chemo-thermo- mechanically coupled analysis of ground deformation induced by gas hydrate dissociation[J]. International Journal of Mechanical Sciences, 52(2):365-376.
doi: 10.1016/j.ijmecsci.2009.10.008
|
[20] |
KLAR A, SOGA K, NG M Y A , 2010. Coupled deformation-flow analysis for methane hydrate extraction[J]. Géotechnique, 60(10):765-776.
doi: 10.1680/geot.9.P.079-3799
|
[21] |
KONNO Y, JIN Y, YONEDA J , et al, 2016. Hydraulic fracturing in methane-hydrate-bearing sand[J]. RSC Advances, 6(77):73148-73155.
doi: 10.1039/C6RA15520K
|
[22] |
KOSSEL E, DEUSNER C, BIGALKE N , et al, 2018. The dependence of water permeability in quartz sand on gas hydrate saturation in the pore space[J]. Journal of Geophysical Research: Solid Earth, 123(2):1235-1251.
doi: 10.1002/jgrb.v123.2
|
[23] |
LATHAM J-P, XIANG JIANSHENG, BELAYNEH M , et al, 2013. Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 57:100-112.
doi: 10.1016/j.ijrmms.2012.08.002
|
[24] |
LEI QINGHUA, LATHAM J-P, XIANG JIANSHENG , et al, 2014. Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock[J]. International Journal of Rock Mechanics and Mining Sciences, 70:507-523.
doi: 10.1016/j.ijrmms.2014.06.001
|
[25] |
LEI QINGHUA, LATHAM J-P, TSANG C-F , et al, 2015a. A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics[J]. Journal of Geophysical Research: Solid Earth, 120(7):4784-4807.
doi: 10.1002/2014JB011736
|
[26] |
LEI QINGHUA, LATHAM J-P, XIANG JIANSHENG , et al, 2015b. Polyaxial stress-induced variable aperture model for persistent 3D fracture networks[J]. Geomechanics for Energy and the Environment, 1:34-47.
doi: 10.1016/j.gete.2015.03.003
|
[27] |
LIU XIAOLI, FLEMINGS P B , 2007. Dynamic multiphase flow model of hydrate formation in marine sediments[J]. Journal of Geophysical Research: Solid Earth, 112(B3):B03101.
|
[28] |
LIU XIAOLI, FLEMINGS P B , 2011. Capillary effects on hydrate stability in marine sediments[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 116(B07102):1-24.
|
[29] |
LIU ZHICHAO, DAI SHENG, NING FULONG , et al, 2018. Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt[J]. Geophysical Research Letters, 45(2):715-723.
doi: 10.1002/grl.v45.2
|
[30] |
MATSUDA H, YAMAKAWA T, SUGAI Y , et al, 2016. Gas production from offshore methane hydrate layer and seabed subsidence by depressurization method[J]. Engineering, 8(6):353-364.
doi: 10.4236/eng.2016.86033
|
[31] |
MORIDIS G J, KOWALSKY M B, PRUESS K , 2008. TOUGH+HYDRATE v1.0 user's manual: a code for the simulation of system behavior in hydrate-bearing geologic media[R]. Berkeley, California: Earth Sciences Division, Lawrence Berkeley National Laboratory: 1-279.
|
[32] |
MUNJIZA A , 2004. The combined finite-discrete element method[M]. Hoboken, NJ: John Wiley & Sons, Ltd:1-333.
|
[33] |
MUNJIZA A, ANDREWS K R F, WHITE J K , 1999. Combined single and smeared crack model in combined finite-discrete element analysis[J]. International Journal for Numerical Methods in Engineering, 44(1):41-57.
doi: 10.1002/(ISSN)1097-0207
|
[34] |
OBEYSEKARA A , 2018. Numerical modelling of hydraulic fracturing in naturally fractured rock[D]. London: Imperial College London: 1-235.
|
[35] |
OBEYSEKARA A, LEI QINGHUA, SALINAS P, et al, 2016. A fluid-solid coupled approach for numerical modeling of near-wellbore hydraulic fracturing and flow dynamics with adaptive mesh refinement [C]//Proceedings of the 50th U.S. rock mechanics/geomechanics symposium. Houston, Texas: American Rock Mechanics Association: 1-12.
|
[36] |
OBEYSEKARA A, LEI QINGHUA, SALINAS P, et al, 2017. Modelling the evolution of a fracture network under excavation-induced unloading and seepage effects based on a fully coupled fluid-solid simulation [C]//Proceedings of the 51st U.S. rock mechanics/geomechanics symposium. San Francisco, California, USA: American Rock Mechanics Association: 1-12.
|
[37] |
OLSSON R, BARTON N , 2001. An improved model for hydromechanical coupling during shearing of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences, 38(3):317-329.
|
[38] |
PARK K P, BAHK J J, KWON Y , et al, 2008. Korean national program expedition confirm rich gas hydrate deposits in the Ulleung Basin, East Sea[J]. Fire in the Ice: Methane Hydrate Newsletter, 2008: 6-9.
|
[39] |
PRUESS K, TSANG Y W , 1990. On two-phase relative permeability and capillary pressure of rough-walled rock fractures[J]. Water Resources Research, 26(9):1915-1926.
doi: 10.1029/WR026i009p01915
|
[40] |
REMPEL A W, BUFFETT B A , 1997. Formation and accumulation of gas hydrate in porous media[J]. Journal of Geophysical Research: Solid Earth, 102(B5):10151-10164.
|
[41] |
REMPEL A W, BUFFETT B A , 1998. Mathematical models of gas hydrate accumulation[J]. Geological Society, London, Special Publications, 137(1):63-74.
doi: 10.1016/j.biortech.2012.04.031
pmid: 22609679
|
[42] |
RUTQVIST J, MORIDIS G J , 2009. Numerical studies on the geomechanical stability of hydrate-bearing sediments[J]. SPE Journal, 14(2):267-282.
doi: 10.2118/126129-PA
|
[43] |
SMITH A J, FLEMINGS P B, LIU XIAOLI , et al, 2014. The evolution of methane vents that pierce the hydrate stability zone in the world's oceans[J]. Journal of Geophysical Research: Solid Earth, 119(8):6337-6356.
doi: 10.1002/jgrb.v119.8
|
[44] |
STONE H L , 1970. Probability model for estimating three-phase relative permeability[J]. Journal of Petroleum Technology, 22(2):214-218.
doi: 10.2118/2116-PA
|
[45] |
STRANNE C, O'REGAN M, JAKOBSSON M , 2017. Modeling fracture propagation and seafloor gas release during seafloor warming-induced hydrate dissociation[J]. Geophysical Research Letters, 44(16):8510-8519.
doi: 10.1002/2017GL074349
|
[46] |
TRÉHU A M, BOHRMANN G, RACK F R , et al, 2003. Proceedings of the ocean drilling program, initial reports, volume 204[R]. Station, Tex: Ocean Drilling Program.
|
[47] |
VAN GENUCHTEN M T , 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 44(5):892-898.
doi: 10.1016/j.jconhyd.2006.05.001
pmid: 16797103
|
[48] |
VIRÉ A, XIANG JIANSHENG, MILTHALER F , et al, 2012. Modelling of fluid-solid interactions using an adaptive mesh fluid model coupled with a combined finite-discrete element model[J]. Ocean Dynamics, 62(10-12):1487-1501.
doi: 10.1007/s10236-012-0575-z
|
[49] |
VIRÉ A, XIANG JIANSHENG, PAIN C C , 2015. An immersed- shell method for modelling fluid-structure interactions[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2035):20140085.
doi: 10.1098/rsta.2014.0085
pmid: 25583857
|
[50] |
XIANG JIANSHENG, MUNJIZA A, LATHAM J-P , 2009. Finite strain, finite rotation quadratic tetrahedral element for the combined finite-discrete element method[J]. International Journal for Numerical Methods in Engineering, 79(8):946-978.
doi: 10.1002/nme.v79:8
|
[51] |
XU WENYUE, RUPPEL C , 1999. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research: Solid Earth, 104(B3):5081-5095.
|
[52] |
YANG PAN, XIANG JIANSHENG, CHEN M , et al, 2017. The immersed-body gas-solid interaction model for blast analysis in fractured solid media[J]. International Journal of Rock Mechanics and Mining Sciences, 91:119-132.
doi: 10.1016/j.ijrmms.2016.10.006
|