1 |
曹春晖, 孙世春, 王学魁 , 等, 2010. 锰浓度对米氏凯伦藻叶绿素荧光特性及生长的影响[J]. 生态学报, 30(19):5280-5288.
|
|
CAO CHUNHUI, SUN SHICHUN, WANG XUEKUI , et al, 2010. Effects of manganese concentrations on the chlorophyll fluorescence characteristics and growth of Karenia mikimotoi[J]. Acta Ecologica Sinica, 30(19):5280-5288 (in Chinese with English abstract).
|
2 |
郭皓, 丁德文, 林凤翱 , 等, 2015. 近20a我国近海赤潮特点与发生规律[J]. 海洋科学进展, 33(4):547-558.
|
|
GUO HAO, DING DEWEN, LIN FENGAO , et al, 2015. Characteristics and patterns of red tide in China coastal waters during the last 20a[J]. Advances in Marine Science, 33(4):547-558 (in Chinese with English abstract).
|
3 |
梁计林, 龙丽娟, 张偲 , 等, 2011. 微量元素Fe、Mn、Co对有毒甲藻生长和产毒的影响[J]. 热带海洋学报, 30(1):119-123.
|
|
LIANG JILIN, LONG LIJUAN, ZHANG SI , et al, 2011. Influence of trace elements, Fe, Mn, and Co, on growth and toxin-producing of toxic marine dinoflagellate Coolia monotis[J]. Journal of Tropical Oceanography, 30(1):119-123.
|
4 |
梁舜华, 张红标 , 1993. 大鹏湾盐田水域赤潮期间水质锰的变化规律[J]. 海洋通报, 12(2):13-16.
|
|
LIANG XUNHUA, ZHANG HONGBIAO , 1993. Change in manganese concentration in waters off Yantian, Dapeng Bay during red tide occurrence[J]. Marine Science Bulletin, 12(2):13-16 (in Chinese with English abstract).
|
5 |
沈竑, 洪君超, 张开富 , 等, 1995. 中肋骨条藻(Skeletonema costatum)赤潮发生过程中微量元素Fe、Mn作用的研究[J]. 暨南大学学报(自然科学与医学版), 16(1):131-136, 149.
|
|
SHEN HONG, HONG JUNCHAO, ZHANG KAIFU , et al, 1995. Studies on the effects of Fe and Mn in the Skeletonema costatum red tide[J]. Journal of Jinan University (Natural Science), 16(1):131-136, 149 (in Chinese with English abstract).
|
6 |
王木兰, 姜玥璐 , 2018. 微量元素锰对威氏海链藻生长及叶绿素荧光的影响[J]. 环境科学, 39(12):5514-5522.
|
|
WANG MULAN, JIANG YUELU , 2018. Effects of manganese on the growth and fluorescence induction kinetics of Conticribra weissflogii[J]. Environmental Science, 39(12):5514-5522 (in Chinese with English abstract).
|
7 |
杨秀环, 唐宝英, 吴京洪 , 等, 2000. 柘林湾赤潮与Fe、Mn、Se和营养盐指数的关系[J]. 中山大学学报(自然科学版), 39(5):58-62.
|
|
YANG XIUHUAN, TANG BAOYING, WU JINGHONG , et al, 2000. Relationship between Fe, Mn, Se, synthetic index of nutrient and red tide in Zhelin Bay[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 39(5):58-62 (in Chinese with English abstract).
|
8 |
叶波, 吴永波, 邵维 , 等, 2014. 高温干旱复合胁迫及复水对构树(Broussonetia papyrifera)幼苗光合特性和叶绿素荧光参数的影响[J]. 生态学杂志, 33(9):2343-2349.
|
|
YE BO, WU YONGBO, SHAO WEI , et al, 2014. Effects of combined stress of elevated temperature and drought and of re-watering on the photosynthetic characteristics and chlorophyll fluorescence parameters of Broussonetia papyrifera seedlings[J]. Chinese Journal of Ecology, 33(9):2343-2349 (in Chinese with English abstract).
|
9 |
ALLEN M D, KROPAT J, TOTTEY S , et al, 2007. Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency[J]. Plant Physiology, 143(1):263-277.
doi: 10.1104/pp.106.088609
pmid: 17085511
|
10 |
ANDERSSON B, ARO E M , 2001. Photodamage and D1 protein turnover in photosystem II[M] //ARO E M, ANDERSSON B. Regulation of Photosynbook. Dordrecht: Springer:377-393.
|
11 |
BAUTISTA-SARAIVA A I N, BONOMI-BARUFI J, FIGUEROA F L , et al, 2018. UV-radiation effects on photosynjournal, photosynthetic pigments and UV-absorbing substances in three species of tropical lotic macroalgae[J]. Theoretical and Experimental Plant Physiology, 30(3):181-192.
doi: 10.1007/s40626-018-0113-6
|
12 |
DĄBROWSKI P, BACZEWSKA A H, PAWLUŚKIEWICZ B , et al, 2016. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass[J]. Journal of Photochemistry and Photobiology B: Biology, 157:22-31.
doi: 10.1016/j.jphotobiol.2016.02.001
pmid: 26878219
|
13 |
DEMMIG B, WINTER K, KRÜGER A , et al, 1987. Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy[J]. Plant Physiology, 84(2):218-224.
doi: 10.1104/pp.84.2.218
pmid: 16665420
|
14 |
FERREIRA K N, IVERSON T M, MAGHLAOUI K , et al, 2004. Architecture of the photosynthetic oxygen-evolving center[J]. Science, 303(5665):1831-1838.
doi: 10.1126/science.1093087
pmid: 14764885
|
15 |
FORCE L, CRITCHLEY C, VAN RENSEN J J S, 2003. New fluorescence parameters for monitoring photosynjournal in plants[J]. Photosynjournal Research, 78(1):17-33.
doi: 10.1002/(SICI)1097-0142(19960701)78:1<17::AID-CNCR4>3.0.CO;2-E
pmid: 8646714
|
16 |
GUAN WANCHUN, LI PING , 2017. Dependency of UVR-induced photoinhibition on atomic ratio of N to P in the dinoflagellate Karenia mikimotoi[J]. Marine Biology, 164(2):31.
doi: 10.1007/s00227-016-3065-x
|
17 |
GUILLARD R R L, RYTHER J H , 1962. Studies of marine planktonic diatoms. I. Cyclotella nana hustedt, and detonula confervacea (cleve) gran[J]. Canadian Journal of Microbiology, 8(2):229-239.
doi: 10.1139/m62-029
pmid: 13902807
|
18 |
HAKALA M, TUOMINEN I, KERÄNEN M , et al, 2005. Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1706(1-2):68-80.
doi: 10.1016/j.bbabio.2004.09.001
pmid: 15620366
|
19 |
HOPKINS E F , 1930. The necessity and function of manganese in the growth of Chlorella sp[J]. Science, 72(1876):609-610.
doi: 10.1126/science.72.1876.609
pmid: 17756374
|
20 |
HSIEH S I, CASTRUITA M, MALASARN D , et al, 2013. The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii[J]. Molecular & Cellular Proteomics, 12(1):65-86.
doi: 10.1074/mcp.M112.021840
pmid: 23065468
|
21 |
HUTNER S H, PROVASOLI L, SCHATZ A , et al, 1950. Some approaches to the study of the role of metals in the metabolism of microorganisms[J]. Proceedings of the American Philosophical Society, 94(2):152-170.
pmid: 919901
|
22 |
KALAJI H M, JAJOO A, OUKARROUM A , et al, 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J]. Acta Physiologiae Plantarum, 38(4):102.
doi: 10.1007/s11738-016-2113-y
|
23 |
KESSLER E , 1955. On the role of manganese in the oxygen-evolving system of photosynjournal[J]. Archives of Biochemistry and Biophysics, 59(2):527-529.
doi: 10.1016/0003-9861(55)90519-1
pmid: 13275970
|
24 |
KUMAR K S, DAHMS H U, LEE J S , et al, 2014. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence[J]. Ecotoxicology and Environmental Safety, 104:51-71.
doi: 10.1016/j.ecoenv.2014.01.042
|
25 |
LARSSON M E, SMITH K F, DOBLIN M A , 2019. First description of the environmental niche of the epibenthic dinoflagellate species Coolia palmyrensis, C. malayensis, and C. tropicalis (Dinophyceae) from Eastern Australia[J]. Journal of Phycology, 55(3):565-577.
doi: 10.1111/jpy.12833
pmid: 30635909
|
26 |
LESSER M P, CULLEN J J, NEALE P J , 1994. Carbon uptake in a marine diatom during acute exposure to ultraviolet B radiation: relative importance of damage and repair[J]. Journal of Phycology, 30(2):183-192.
doi: 10.1111/j.0022-3646.1994.00183.x
|
27 |
LEUNG P T Y, YAN M, YIU S K F , et al, 2017. Molecular phylogeny and toxicity of harmful benthic dinoflagellates Coolia (Ostreopsidaceae, Dinophyceae) in a sub-tropical marine ecosystem: the first record from Hong Kong[J]. Marine Pollution Bulletin, 124(2):878-889.
doi: 10.1016/j.marpolbul.2017.01.017
pmid: 28139234
|
28 |
LI QIANG, CHEN HUANHUAN, QI YIPING , et al, 2019. Excess copper effects on growth, uptake of water and nutrients, carbohydrates, and PSII photochemistry revealed by OJIP transients in Citrus seedlings[J]. Environmental Science and Pollution Research, 26(29):30188-30205.
doi: 10.1007/s11356-019-06170-2
pmid: 31422532
|
29 |
OHAD I, PRÁŠIL O, ADIR N , 1992. Dynamics of photosystem II: mechanism of photoinhibition and recovery processes[M] //BARBER J. The Photosystems: Structure, Function and Molecular Biology. Amsterdam: Elsevier:295-348.
|
30 |
OHNISHI N, ALLAKHVERDIEV S I, TAKAHASHI S , et al, 2005. Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center[J]. Biochemistry, 44(23):8494-8499.
doi: 10.1021/bi047518q
pmid: 15938639
|
31 |
PAUSCH F, BISCHOF K, TRIMBORN S , 2019. Iron and manganese co-limit growth of the Southern Ocean diatom Chaetoceros debilis[J]. PLoS One, 14(9):e0221959.
doi: 10.1371/journal.pone.0221959
pmid: 31525212
|
32 |
PLATT T, GALLEGOS C L, HARRISON W G , 1980. Photoinhibition of photosynjournal in natural assemblages of marine phytoplankton[J]. Journal of Marine Research, 38(4):687-701.
|
33 |
SCHMIDT S B, JENSEN P E, HUSTED S , 2016. Manganese deficiency in plants: the impact on photosystem II[J]. Trends in Plant Science, 21(7):622-632.
doi: 10.1016/j.tplants.2016.03.001
pmid: 27150384
|
34 |
STRASSER R J, SRIVASTAVA A, TSIMILLI-MICHAEL M , 2000. The fluorescence transient as a tool to characterise and screen photosynthetic samples[M] //YUNUS M, PATHRE U, MOHANTY P. Probing Photosynthesis: Mechanism, Regulation & Adaptation. London: Taylor and Francis Press: 445-483.
|
35 |
STRASSER R J, TSIMILLI-MICHAEL M, SRIVASTAVA A , 2004. Analysis of the chlorophyll a fluorescence transient[M] // PAPAGEORGIOU G C, GOVINDJEE. Chlorophyll A Fluorescence. Dordrecht: Springer:321-362.
|
36 |
WANG ZHAOWEI, REN JINGLING, ZHANG RUIFENG , et al, 2019. Physical and biological controls of dissolved manganese on the northern slope of the South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 167:25-33.
doi: 10.1016/j.dsr2.2018.07.006
|
37 |
ZHANG L T, GAO H Y, ZHANG Z S , et al, 2012. Multiple effects of inhibition of mitochondrial alternative oxidase pathway on photosynthetic apparatus in Rumex K-1 leaves[J]. Biologia Plantarum, 56(2):365-368.
doi: 10.1007/s10535-012-0100-8
|