[1] |
侯晓艳, 2019. 基于生物信息学与多肽组学的花椒籽抗菌肽筛选及抑菌机理研究[D]. 成都: 四川农业大学.
|
|
HOU XIAOYAN, 2019. Screening of antibacterial peptides and inhibition mechanism of pepper seeds based on bioinformatics and peptidomics[D]. Chengdu: Sichuan Agricultural University (in Chinese with English abstract).
|
[2] |
李成华, 2007. 栉孔扇贝核心组蛋白的基因结构及H2A抗菌活性的研究[D]. 青岛: 中国科学院海洋研究所.
|
|
LI CHENGHUA, 2007. Study on the gene structure and H2A antibacterial activity of the core histone of the ctenophore scallop (Pecten spp.)[D]. Qingdao: Graduate School of Chinese Academy of Sciences (Institute of Oceanography) (in Chinese with English abstract).
|
[3] |
李冠楠, 夏雪娟, 隆耀航, 等, 2014. 抗菌肽的研究进展及其应用[J]. 动物营养学报, 26(1): 17-25.
doi: 10.3969/j.issn.1006-267x.2014.01.003
|
|
LI GUANNAN, XIA XUEJUAN, LONG YAOHANG, et al, 2014. Research progresses and applications of antimicrobial peptides[J]. Journal of Animal Nutrition, 26(1): 17-25 (in Chinese with English abstract).
|
[4] |
马健, 2010. 海参再生研究进展[J]. 安徽农业科学, 38(11): 5694-5695, 5768.
|
|
MA JIAN, 2010. Research Progress on the Regeneration of the Holothurians[J]. Anhui Agricultural Science, 38(11): 5694-5695, 5768 (in Chinese with English abstract).
|
[5] |
聂竹兰, 李霞, 2006. 海参再生的研究[J]. 海洋科学, 30(5): 78-82.
|
|
NIE ZULAN, LI XIA, 2006. Study on the regeneration of sea cucumber[J]. Marine Science, 30(5): 78-82 (in Chinese with English abstract).
|
[6] |
张婷婷, 高珊, 矫建, 等, 2018. 香丹注射液溶血性实验及药物安全性检测问题探讨[J]. 中国药事, 32(4): 529-532.
|
|
ZHANG TINGTING, GAO SHAN, JIAO JIAN, et al, 2018. Discussion on the hemolytic experiment and drug safety testing of Xiangdan injection[J]. China Pharmaceutical Affairs, 32(4): 529-532 (in Chinese with English abstract).
|
[7] |
朱宁艺, 2021. 抗菌肽Mastoparan-C新型类似物的设计、合成、构效关系及其抑制和逆转抗生素耐药性作用研究[D]. 兰州: 兰州大学.
|
|
ZHU NINGYI, 2021. Design, synthesis, conformational relationship and inhibition and reversal of antibiotic resistance of novel analogues of the antimicrobial peptide Mastoparan-C[D]. Lanzhou: Lanzhou University (in Chinese with English abstract).
|
[8] |
AHMAD F, ASHRAF N, ELAHI M I, et al, 2022. Fabrication of biogenic-silver nanoparticles functionalized electrospun membranes counteracting bacteria and enhance wound healing[J]. Materials Today Communications, 31: 103493.
doi: 10.1016/j.mtcomm.2022.103493
|
[9] |
BUSTILLO M E, FISCHER A L, LABOUYER M A, et al, 2014. Modular analysis of hipposin, a histone-derived antimicrobial peptide consisting of membrane translocating and membrane permeabilizing fragments[J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838(9): 2228-2233.
doi: 10.1016/j.bbamem.2014.04.010
|
[10] |
CHEN YUXIN, MANT C T, HODGES R S, 2002. Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic alpha-helix[J]. Journal of Peptide Research, 59(1): 18-33.
pmid: 11906604
|
[11] |
CHO J H, SUNG B H, KIM S C, 2009. Buforins: Histone H2A-derived antimicrobial peptides from toad stomach[J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1788(8): 1564-1569.
doi: 10.1016/j.bbamem.2008.10.025
|
[12] |
CIUMAC D, GONG HAONING, HU XUZHI, et al, 2019. Membrane targeting cationic antimicrobial peptides[J]. Journal of Colloid and Interface Science, 537: 163-185.
doi: S0021-9797(18)31300-6
pmid: 30439615
|
[13] |
DE ZOYSA M, NIKAPITIYA C, WHANG I, et al, 2009. Abhisin: A potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus)[J]. Fish & Shellfish Immunology, 27(5): 639-646.
|
[14] |
HAMMAMI R, FLISS I, 2010. Current trends in antimicrobial agent research: chemo- and bioinformatics approaches[J]. Drug Discovery Today, 15(13-14): 540-546.
doi: 10.1016/j.drudis.2010.05.002
pmid: 20546918
|
[15] |
HANCOCK R E W, GILL DIAMOND, 2000. The role of cationic antimicrobial peptides in innate host defences[J]. Trends in Microbiology, 8(9): 402-410.
pmid: 10989307
|
[16] |
KOO Y S, KIM J M, PARK I Y, et al, 2008. Structure-activity relations of parasin I, a histone H2A-derived antimicrobial peptide[J]. Peptides, 29(7): 1102-1108.
doi: 10.1016/j.peptides.2008.02.019
pmid: 18406495
|
[17] |
LI CHUN, BLENCKE H -M, HAUG T, et al, 2015. Antimicrobial peptides in echinoderm host defense[J]. Developmental & Comparative Immunology, 49(1): 190-197.
|
[18] |
LIMA P G, OLIVEIRA 0 J T A, AMARAL J L, et al, 2021. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance[J]. Life Sciences, 278: 119647.
doi: 10.1016/j.lfs.2021.119647
|
[19] |
MATELUNA C, TORRWS P, RODRIGUEZ-PRÑA M, et al, 2022. Identification of VEGFR2 as the Histatin-1 receptor in endothelial cells[J]. Biochemical Pharmacology, 201: 115079.
doi: 10.1016/j.bcp.2022.115079
|
[20] |
MI BOBIN, LIU JING, LIU YI, et al, 2018. The designer antimicrobial peptide A-hBD-2 facilitates skin wound healing by stimulating keratinocyte migration and proliferation[J]. Cellular Physiology and Biochemistry, 51(2): 647-663.
doi: 10.1159/000495320
pmid: 30463067
|
[21] |
NIYONSABA F, USHIO H, NAKANO N, et al, 2007. Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines[J]. Journal of Investigative Dermatology, 127(3): 594-604.
doi: 10.1038/sj.jid.5700599
|
[22] |
ONG Z Y, WIRADHARMA N, YANG YIYAN, 2014. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials[J]. Advanced Drug Delivery Reviews, 78: 28-45.
doi: 10.1016/j.addr.2014.10.013
|
[23] |
OSAKABE A, MOLARO A, 2022. Histone renegades: Unusual H2A histone variants in plants and animals[J]. Seminars in Cell & Developmental Biology, 135: 35-42.
|
[24] |
RAMOS R, SILVA J P, RODRIGUES A C, et al, 2011. Wound healing activity of the human antimicrobial peptide LL37[J]. Peptides, 32(7): 1469-1476.
doi: 10.1016/j.peptides.2011.06.005
pmid: 21693141
|
[25] |
SAKTHIGURU N, MANIMOHAN M, JAGANATHAN G, et al, 2021. Biologically active Chitosan/ZnO/Acalypha indica leaf extract biocomposite: An investigation of antibacterial, cell proliferation and cell migration aptitude for wound healing application[J]. Sustainable Chemistry and Pharmacy, 19: 100357.
doi: 10.1016/j.scp.2020.100357
|
[26] |
SHAO CHANGXUAN, TIAN HAOTIAN, WANG TIANYU, et al, 2018. Central β-turn increases the cell selectivity of imperfectly amphipathic α-helical peptides[J]. Acta Biomaterialia, 69: 243-255.
doi: S1742-7061(18)30020-5
pmid: 29355714
|
[27] |
SHEN CUKUAN, LIN YUNZHI, MOHAMMADI T N, et al, 2022. Characterization of novel antimicrobial peptides designed on the basis of amino acid sequence of peptides from egg white hydrolysate[J]. International Journal of Food Microbiology, 378: 109802.
doi: 10.1016/j.ijfoodmicro.2022.109802
|
[28] |
SHI PUJIE, LIU MENG, FAN FENGJIAO, et al, 2018. Identification and mechanism of peptides with activity promoting osteoblast proliferation from bovine lactoferrin[J]. Food Bioscience, 22: 19-25.
doi: 10.1016/j.fbio.2017.12.011
|
[29] |
TAN PENG, FU HUIYANG, MA XI, 2021. Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications[J]. Nano Today, 39: 101229.
doi: 10.1016/j.nantod.2021.101229
|
[30] |
TANIGUCHI M, SAITO K, AIDA R, et al, 2019. Wound healing activity and mechanism of action of antimicrobial and lipopolysaccharide-neutralizing peptides from enzymatic hydrolysates of rice bran proteins[J]. Journal of Bioscience and Bioengineering, 128(2): 142-148.
doi: S1389-1723(18)31134-4
pmid: 30799089
|
[31] |
THAPA R K, DIEO D B, TØNNESE H H, 2020. Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects[J]. Acta Biomaterialia, 103: 52-67.
doi: S1742-7061(19)30854-2
pmid: 31874224
|
[32] |
ZHANG HAN, GAO ZHENJIE, DIAO QIANYING, et al, 2022. Antimicrobial activity and mechanisms of a derived antimicrobial peptide TroNKL-27 from golden pompano (Trachinotus ovatus) NK-lysin[J]. Fish & Shellfish Immunology, 126: 357-369.
|
[33] |
ZHUANG XUE, LI HUI, WANG XIULI, et al, 2015. A review of the immune molecules in the sea cucumber[J]. Fish & Shellfish Immunology, 44(1): 1-11.
|