[1] |
何露露, 杨平, 谭立山, 等, 2019. 福州地区海湾和河口潮汐沼泽湿地秋季上覆水营养盐分布特征[J]. 环境科学, 40(4): 1788-1796.
|
|
HE LULU, YANG PING, TAN LISHAN, et al, 2019. Nutrient distribution of overlying water in tidal marshes in five estuaries and bays of the Fuzhou region in autumn[J]. Environmental Science, 40(4): 1788-1796 (in Chinese with English abstract).
|
[2] |
施玉珍, 赵利容, 柯盛, 等, 2013. 湛江湾海域营养盐的时空分布特征及潜在性富营养化研究[C]//热带海洋科学学术研讨会暨第八届广东海洋湖沼学会、第七届广东海洋学会会员代表大会论文及摘要汇编. 北京: 中国学术期刊电子出版社, 395-401,
|
|
SHI YUZHEN, ZHAO LIRONG, KE SHENG, et al, 2013. Studies on distribution feature of nutrient and potential eutrophication in Zhan Jiang Bay sea area[C]// Symposium on tropical marine science and compilation of papers and abstracts of the eighth Guangdong oceanology society and the seventh Guangdong oceanography congress. Beijing: China Academic Journal Electronic Publishing House: 395-401 (in Chinese with English abstract).
|
[3] |
石泳昊, 贾良文, 张恒, 等, 2021. 湛江湾内湾环境容量计算与排污治理[J]. 热带海洋学报, 40(4): 134-142.
doi: 10.11978/2020086
|
|
SHI YONGHAO, JIA LIANGWEN, ZHANG HENG, et al, 2021. Environmental capacity calculation and sewage treatment in Inner Zhanjiang Bay[J]. Journal of Tropical Oceanography, 40(4): 134-142 (in Chinese with English abstract).
doi: 10.11978/2020086
|
[4] |
王丽芳, 黄韬, 杜川军, 等, 2021. 不同海水营养盐现场连续观测系统的比较研究[J]. 热带海洋学报, 40(3): 103-113.
doi: 10.11978/2020087
|
|
WANG LIFANG, HUANG TAO, DU CHUANJUN, et al, 2021. Comparison of different continuous in-situ observation systems in seawater[J]. Journal of Tropical Oceanography, 40(3): 103-113 (in Chinese with English abstract).
doi: 10.11978/2020087
|
[5] |
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会, 2007. GB 17378. 4-2007 海洋监测规范第4部分: 海水分析[S]. 北京: 中国标准出版社: 109-111.
|
|
GENERAL ADMINISTRATION OF QUALITY SUPERVISION,INSPECTION AND QUARANTINE OF THE PEOPLE’S REPUBLIC OF CHINA, STANDARDIZATION ADMINISTRATION OF THE PEOPLE’S REPUBLIC OF CHINA, 2007. GB 17378. 4-2007 The specification for marine monitoring—Part 4: Seawater analysis[S]. Beijing: Standards Press of China: 109-111 (in Chinese).
|
[6] |
ADORNATO L R, KALTENBACHER E A, GREENHOW D R, et al, 2007. High-resolution in situ analysis of nitrate and phosphate in the oligotrophic ocean[J]. Environmental Science & Technology, 41(11): 4045-4052.
|
[7] |
BEROUNSKY V M, NIXON S W, 1993. Rates of nitrification along an estuarine gradient in Narragansett Bay[J]. Estuaries, 16(4): 718-730.
|
[8] |
BRANDES J A, DEVOL A H, DEUTSCH C, 2007. New developments in the marine nitrogen cycle[J]. Chemical Reviews, 107(2): 577-589.
pmid: 17300141
|
[9] |
CONLEY D J, PAERL H W, HOWARTH R W, et al, 2009. Controlling eutrophication: nitrogen and phosphorus[J]. Science, 323(5917): 1014-1015.
|
[10] |
DESMIT X, THIEU V, BILLEN G, et al, 2018. Reducing marine eutrophication may require a paradigmatic change[J]. The Science of the Total Environment, 635: 1444-1466.
doi: S0048-9697(18)31360-3
pmid: 29710669
|
[11] |
DONEY S C, 2010. The growing human footprint on coastal and open-ocean biogeochemistry[J]. Science, 328(5985): 1512-1516.
doi: 10.1126/science.1185198
pmid: 20558706
|
[12] |
DUARTE C M, BORJA A, CARSTENSEN J, et al, 2015. Paradigms in the recovery of estuarine and coastal ecosystems[J]. Estuaries and Coasts, 38(4): 1202-1212.
|
[13] |
DUFFY G, REGAN F, 2017. Recent developments in sensing methods for eutrophying nutrients with a focus on automation for environmental applications[J]. The Analyst, 142(23): 4355-4372.
|
[14] |
ELSER J J, BRACKEN M E S, CLELAND E E, et al, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 10(12): 1135-1142.
doi: 10.1111/j.1461-0248.2007.01113.x
pmid: 17922835
|
[15] |
JOŃCA J, COMTAT M, GARÇON V, 2013. In situ phosphate monitoring in seawater: Today and tomorrow[M]// MUKHOPADHYAYS C, MASONA, Smart Sensors for Real-Time Water Quality Monitoring. Berlin, Heidelberg: Springer: 25-44.
|
[16] |
KHONGPET W, PENCHAREE S, PUANGPILA C, et al, 2019. A compact hydrodynamic sequential injection system for consecutive on-line determination of phosphate and ammonium[J]. Microchemical Journal, 147: 403-410.
|
[17] |
KIEBER R J, SEATON P J, 1995. Determination of subnanomolar concentrations of nitrite in natural waters[J]. Analytical Chemistry, 67(18): 3261-3264.
|
[18] |
MA JIAN, LI PEICONG, LIN KUNNING, et al, 2018. Optimization of a salinity-interference-free indophenol method for the determination of ammonium in natural waters using o-phenylphenol[J]. Talanta, 179: 608-614.
|
[19] |
MCCRACKIN M L, JONES H P, JONES P C, et al, 2017. Recovery of lakes and coastal marine ecosystems from eutrophication: A global meta-analysis[J]. Limnology and Oceanography, 62(2): 507-518.
|
[20] |
NIGHTINGALE A M, BEATON A D, MOWLEM M C, 2015. Trends in microfluidic systems for in situ chemical analysis of natural waters[J]. Sensors and Actuators B: Chemical, 221: 1398-1405.
|
[21] |
THIERS R E, MEYN J, WILDERMANN R F, 1970. Use of a computer program to correct for sample interaction: A significant adjunct to continuous-flow analysis[J]. Clinical Chemistry, 16(10): 832-839.
|
[22] |
YANG ZEMING, LI CAI, CHEN FEI, et al, 2022. An in situ analyzer for long-term monitoring of nitrite in seawater with versatile liquid waveguide capillary cells: Development, optimization and application[J]. Marine Chemistry, 245: 104149.
|
[23] |
ZHANG JIAZHONG, 1997. Distinction and quantification of carry-over and sample interaction in gas segmented continuous flow analysis[J]. Journal of Automatic Chemistry, 19(6): 205-212.
pmid: 18924810
|