[1] |
胡石建, 李诗翰, 2022. 海洋热浪研究进展与展望[J]. 地球科学进展, 37(1): 51-64.
doi: 10.11867/j.issn.1001-8166.2021.121
|
|
HU SHIJIAN, LI SHIHAN, 2022. Progress and prospect of marine heatwave study[J]. Advances in Earth Science, 37(1): 51-64. (in Chinese with English abstract).
doi: 10.11867/j.issn.1001-8166.2021.121
|
[2] |
缪予晴, 徐海明, 刘佳伟, 2021. 西北太平洋夏季海洋热浪的变化特征及海气关系[J]. 热带海洋学报, 40(1): 31-43.
doi: 10.11978/2020016
|
|
MIAO YUQING, XU HAIMING, LIU JIAWEI, 2021. Variation of summer marine heatwaves in the Northwest Pacific and associated air-sea interaction[J]. Journal of Tropical Oceanography, 40(1): 31-43 (in Chinese with English abstract).
doi: 10.11978/2020016
|
[3] |
唐颢苏, 胡开明, 黄刚, 2019. El Niño衰退年夏季西北太平洋异常反气旋季节内演变特征及其机制[J]. 气候与环境研究, 24(4): 525-536.
|
|
TANG HAOSU, HU KAIMING, HUANG GANG, 2019. Characteristics and mechanisms of sub-seasonal evolution of Northwest Pacific anomalous anticyclone during the El Niño decaying summer[J]. Climatic and Environmental Research, 24(4): 525-536 (in Chinese with English abstract).
|
[4] |
王爱梅, 王慧, 范文静, 等, 2021. 2019年中国近海海洋热浪特征研究[J]. 海洋学报, 43(6): 35-44.
|
|
WANG AIMEI, WANG HUI, FAN WENJING, et al, 2021. Study on characteristics of marine heatwave in the China offshore in 2019[J]. Haiyang Xuebao, 43(6): 35-44 (in Chinese with English abstract).
|
[5] |
AMAYA D J, JACOX M G, ALEXANDER M A, et al, 2023. Bottom marine heatwaves along the continental shelves of North America[J]. Nature Communications, 14(1): 1038.
doi: 10.1038/s41467-023-36567-0
pmid: 36914643
|
[6] |
BARNSTON A G, ROPELEWSKI C F, 1992. Prediction of ENSO episodes using canonical correlation analysis[J]. Journal of Climate, 5(11): 1316-1345.
|
[7] |
BEHRENS E, FERNANDEZ D, SUTTON P, 2019. Meridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescales[J]. Frontiers in Marine Science, 6: 228.
|
[8] |
CAVOLE L M, DEMKO A M, DINER R E, et al, 2016. Biological impacts of the 2013-2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future[J]. Oceanography, 29(2): 273-285.
|
[9] |
CHEN KE, GAWARKIEWICZ G G, LENTZ S J, et al, 2014. Diagnosing the warming of the Northeastern U.S. coastal ocean in 2012: A linkage between the atmospheric jet stream variability and ocean response[J]. Journal of Geophysical Research: Oceans, 119(1): 218-227.
|
[10] |
DI LORENZO E, MANTUA N, 2016. Multi-year persistence of the 2014/15 North Pacific marine heatwave[J]. Nature Climate Change, 6(11): 1042-1047.
doi: 10.1038/NCLIMATE3082
|
[11] |
DONG BUWEN, SUTTON R T, 2007. Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM[J]. Journal of Climate, 20(19): 4920-4939.
|
[12] |
DONG BUWEN, SUTTON R T, SCAIFE A A, 2006. Multidecadal modulation of El Niño-southern oscillation (ENSO) variance by Atlantic Ocean Sea surface temperatures[J]. Geophysical Research Letters, 33(8): L08705.
|
[13] |
ENFIELD D B, MESTAS-NUÑEZ A M, TRIMBLE P J, 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S.[J]. Geophysical Research Letters, 28(10): 2077-2080.
|
[14] |
FAN YI, FAN KE, ZHU XIUHUA, et al, 2019. El Niño-related summer precipitation anomalies in Southeast Asia modulated by the Atlantic multidecadal oscillation[J]. Journal of Climate, 32(22): 7971-7987.
|
[15] |
FENG MING, MCPHADEN M J, XIE SHANGPING, et al, 2013. La Niña forces unprecedented Leeuwin Current warming in 2011[J]. Scientific Reports, 3: 1277.
doi: 10.1038/srep01277
pmid: 23429502
|
[16] |
FRÖLICHER T L, FISCHER E M, GRUBER N, 2018. Marine heatwaves under global warming[J]. Nature, 560(7718): 360-364.
|
[17] |
GARRABOU J, COMA R, BENSOUSSAN N, et al, 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave[J]. Global Change Biology, 15(5): 1090-1103.
|
[18] |
GENG XIN, ZHANG WENJUN, STUECKER M F, et al, 2017. Decadal modulation of the ENSO-East Asian winter monsoon relationship by the Atlantic multidecadal oscillation[J]. Climate Dynamics, 49(7-8): 2531-2544.
|
[19] |
GILL A E, 1980. Some simple solutions for heat-induced tropical circulation[J]. Quarterly Journal of the Royal Meteorological Society, 106(449): 447-462.
|
[20] |
HAN TONGXIN, XU KANG, WANG LIJUAN, et al, 2023. Extremely long-lived marine heatwave in South China Sea during summer 2020: Combined effects of the seasonal and intraseasonal variations[J]. Global and Planetary Change, 230: 104261.
|
[21] |
HAYASHIDA H, MATEAR R J, STRUTTON P G, et al, 2020. Insights into projected changes in marine heatwaves from a high-resolution ocean circulation model[J]. Nature Communications, 11(1): 4352.
doi: 10.1038/s41467-020-18241-x
pmid: 32859903
|
[22] |
HERSBACH H, BELL B, BERRISFORD P, et al, 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049.
|
[23] |
HOBDAY A J, ALEXANDER L V, PERKINS S E, et al, 2016. A hierarchical approach to defining marine heatwaves[J]. Progress in Oceanography, 141: 227-238.
|
[24] |
HOLBROOK N J, SCANNELL H A, SEN GUPTA A, et al, 2019. A global assessment of marine heatwaves and their drivers[J]. Nature Communications, 10(1): 2624.
doi: 10.1038/s41467-019-10206-z
pmid: 31201309
|
[25] |
HOLBROOK N J, SEN GUPTA A, OLIVER E C J, et al, 2020. Keeping pace with marine heatwaves[J]. Nature Reviews Earth & Environment, 1(9): 482-493.
|
[26] |
HU KAIMING, HUANG GANG, QU XIA, et al, 2012. The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River Valley in late summer[J]. Advances in Atmospheric Sciences, 29(1): 91-100.
|
[27] |
JACOX M G, ALEXANDER M A, BOGRAD S J, et al, 2020. Thermal displacement by marine heatwaves[J]. Nature, 584(7819): 82-86.
|
[28] |
KAY J E, WALL C, YETTELLA V, et al, 2016. Global climate impacts of fixing the Southern Ocean shortwave radiation Bias in the Community Earth System Model (CESM)[J]. Journal of Climate, 29(12): 4617-4636.
|
[29] |
KING A D, KAROLY D J, HENLEY B J, 2017. Australian climate extremes at 1.5 ℃ and 2 ℃ of global warming[J]. Nature Climate Change, 7(6): 412-416.
|
[30] |
LAUFKÖTTER C, ZSCHEISCHLER J, FRÖLICHER T L, 2020. High-impact marine heatwaves attributable to human-induced global warming[J]. Science, 369(6511): 1621-1625.
doi: 10.1126/science.aba0690
pmid: 32973027
|
[31] |
LIU KAI, XU KANG, ZHU CONGWEN, et al, 2022. Diversity of marine heatwaves in the South China Sea regulated by ENSO phase[J]. Journal of Climate, 35(2): 877-893.
|
[32] |
LU RIYU, DONG BUWEN, 2005. Impact of Atlantic sea surface temperature anomalies on the summer climate in the western North Pacific during 1997-1998[J]. Journal of Geophysical Research: Atmospheres, 110(D16): D16102.
|
[33] |
LU RIYU, DONG BUWEN, DING HUI, 2006. Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon[J]. Geophysical Research Letters, 33(24): L24701.
|
[34] |
LUO FEIFEI, LI SHUANGLIN, FUREVIK T, 2011. The connection between the Atlantic multidecadal oscillation and the Indian summer monsoon in Bergen Climate Model version 2.0[J]. Journal of Geophysical Research: Atmospheres, 116(D19): D19117.
|
[35] |
MARBÀ N, DUARTE C M, 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality[J]. Global Change Biology, 16(8): 2366-2375.
|
[36] |
MATSUNO T, 1966. Quasi-geostrophic motions in the equatorial area[J]. Journal of the Meteorological Society of Japan. Ser. Ⅱ, 44(1): 25-43.
|
[37] |
MILLS K E, PERSHING A J, BROWN C J, et al, 2013. Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic[J]. Oceanography, 26(2): 191-195.
|
[38] |
OLIVER E C J, 2019. Mean warming not variability drives marine heatwave trends[J]. Climate Dynamics, 53(3-4): 1653-1659.
doi: 10.1007/s00382-019-04707-2
|
[39] |
OLIVER E C J, BENTHUYSEN J A, BINDOFF N L, et al, 2017. The unprecedented 2015/16 Tasman Sea marine heatwave[J]. Nature Communications, 8: 16101.
doi: 10.1038/ncomms16101
pmid: 28706247
|
[40] |
OLIVER E C J, DONAT M G, BURROWS M T, et al, 2018. Longer and more frequent marine heatwaves over the past century[J]. Nature Communications, 9(1): 1324.
doi: 10.1038/s41467-018-03732-9
pmid: 29636482
|
[41] |
PEARCE A F, FENG MING, 2013. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011[J]. Journal of Marine Systems, 111-112: 139-156.
|
[42] |
RAYNER N A, PARKER D E, HORTON E B, et al, 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late Nineteenth Century[J]. Journal of Geophysical Research: Atmospheres, 108(D14): 4407.
|
[43] |
REN XIANGLIN, LIU WEI, CAPOTONDI A, et al, 2023. The Pacific Decadal Oscillation modulated marine heatwaves in the Northeast Pacific during past decades[J]. Communications Earth & Environment, 4(1): 218.
|
[44] |
RUPRICH-ROBERT Y, MSADEK R, CASTRUCCIO F, et al, 2017. Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 Global Coupled Models[J]. Journal of Climate, 30(8): 2785-2810.
|
[45] |
SCANNELL H A, JOHNSON G C, THOMPSON L, et al, 2020. Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific[J]. Geophysical Research Letters, 47(23): e2020GL090548.
|
[46] |
SCANNELL H A, PERSHING A J, ALEXANDER M A, et al, 2016. Frequency of marine heatwaves in the North Atlantic and north pacific since 1950[J]. Geophysical Research Letters, 43(5): 2069-2076.
|
[47] |
SCHAEFFER A, ROUGHAN M, 2017. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds[J]. Geophysical Research Letters, 44(10): 5025-5033.
|
[48] |
SMALE D A, WERNBERG T, 2013. Extreme climatic event drives range contraction of a habitat-forming species[J]. Proceedings of the Royal Society B: Biological Sciences, 280(1754): 20122829.
|
[49] |
SMALE D A, WERNBERG T, OLIVER E C J, et al, 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services[J]. Nature Climate Change, 9(4): 306-312.
|
[50] |
TAN HONGJIAN, CAI RONGSHUO, 2018. What caused the record-breaking warming in East China Seas during August 2016?[J]. Atmospheric Science Letters, 19(16): e853.
|
[51] |
TRASCASA-CASTRO P, RUPRICH-ROBERT Y, CASTRUCCIO F, et al, 2021. Warm phase of AMV damps ENSO through weakened thermocline feedback[J]. Geophysical Research Letters, 48(23): e2021GL096149.
|
[52] |
TRENBERTH K E, 1997. The definition of El Niño[J]. Bulletin of the American Meteorological Society, 78(12): 2771-2778.
|
[53] |
TRENBERTH K E, SHEA D J, 2006. Atlantic hurricanes and natural variability in 2005[J]. Geophysical Research Letters, 33(12): L12704.
|
[54] |
WANG BIN, LIU JIAN, YANG JING, et al, 2009. Distinct principal modes of early and late summer rainfall anomalies in East Asia[J]. Journal of Climate, 22(13): 3864-3875.
|
[55] |
WANG BIN, WU RENGUANG, FU XIOUHUA, 2000. Pacific-East Asian teleconnection: how does ENSO affect East Asian climate?[J]. Journal of Climate, 13(9): 1517-1536.
|
[56] |
WANG BIN, XIANG BAOQIANG, LEE J Y, 2013. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(8): 2718-2722.
doi: 10.1073/pnas.1214626110
pmid: 23341624
|
[57] |
WORLEY S J, WOODRUFF S D, REYNOLDS R W, et al, 2005. ICOADS release 2.1 data and products[J]. International Journal of Climatology, 25(7): 823-842.
|
[58] |
XIE SHANGPING, HU KAIMING, HAFNER J, et al, 2009. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño[J]. Journal of Climate, 22(3): 730-747.
|
[59] |
XU MENG, XU HAIMING, MA JING, et al, 2021. Impact of Atlantic multidecadal oscillation on interannual relationship between ENSO and East Asian early summer monsoon[J]. International Journal of Climatology, 41(4): 2860-2877.
|
[60] |
YAO YULONG, WANG CHUNZAI, 2021. Variations in summer marine heatwaves in the South China Sea[J]. Journal of Geophysical Research: Oceans, 126(10): e2021JC017792.
|
[61] |
YAO YULONG, WANG CHUNZAI, WANG CHAO, 2023. Record-breaking 2020 summer marine heatwaves in the western North Pacific[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 209: 105288.
|
[62] |
ZHANG RENHE, SUMI A, KIMOTO M, 1996. Impact of El Niño on the East Asian monsoon: a diagnostic study of the ’86/87 and ’91/92 events[J]. Journal of the Meteorological Society of Japan. Ser. Ⅱ, 74(1): 49-62.
|
[63] |
ZHANG RENHE, SUMI A, KIMOTO M, 1999. A diagnostic study of the impact of El Niño on the precipitation in China[J]. Advances in Atmospheric Sciences, 16(2): 229-241.
|
[64] |
ZHANG RONG, DELWORTH T L, 2007. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability[J]. Geophysical Research Letters, 34(23): L23708.
|
[65] |
ZHANG WENJUN, LI HAIYAN, STUECKER M F, et al, 2016. A new understanding of El Niño’s impact over East Asia: Dominance of the ENSO combination mode[J]. Journal of Climate, 29(12): 4347-4359.
|
[66] |
ZHANG WENJUN, LI SIXU, JIN FEIFEI, et al, 2019. ENSO regime changes responsible for decadal phase relationship variations between ENSO sea surface temperature and warm water volume[J]. Geophysical Research Letters, 46(13): 7546-7553.
|
[67] |
ZHANG YING, DU YAN, FENG MING, et al, 2021. Long-lasting marine heatwaves instigated by ocean planetary waves in the tropical Indian Ocean during 2015-2016 and 2019-2020[J]. Geophysical Research Letters, 48(21): e2021GL095350.
|
[68] |
ZHAO CHIYU, GENG XIN, ZHANG WENJUN, et al, 2022. Atlantic multidecadal oscillation modulates ENSO atmospheric anomaly amplitude in the tropical Pacific[J]. Journal of Climate, 35(12): 3891-3903.
|