热带海洋学报

• • 上一篇    

风应力频率变化对中尺度涡旋锋面亚中尺度能量的调制作用

吴波岩1,2, 郑瑞玺1, 经志友1
  

  1. 1. 热带海洋环境与岛礁生态全国重点实验室, 中国科学院南海海洋研究所, 广东 广州 510301;

    2. 中国科学院大学, 北京100049



  • 收稿日期:2025-08-03 修回日期:2025-10-09 接受日期:2025-11-17
  • 通讯作者: 郑瑞玺
  • 基金资助:

    国家重点研发计划项目(2023YFC3008003); 国家自然科学基金项目(42225602425304034230602742149907423495844234990742549907); 中国科学院南海海洋研究所自主部署项目(SCSIO2024HC04SCSIO2023QY02SCSIO202201SCSIO202204SCSIO202209)

The Impact of Wind Stress Frequency on Submesoscale Energy Variations at Mesoscale Eddy Fronts

WU Boyan1,2, ZHENG Ruixi1, JING Zhiyou1   

  1. 1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;

    2. University of Chinese Academy of Sciences, Beijing 100049, China



  • Received:2025-08-03 Revised:2025-10-09 Accepted:2025-11-17
  • Supported by:

    National Key Research and Development Program of China (2023YFC3008003); National Natural Science Foundation of China (42225602, 42530403, 42306027, 42149907, 42349584, 42349907,42549907); Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences (SCSIO2024HC04, SCSIO2023QY02, SCSIO202201, SCSIO202204, SCSIO202209)

摘要: 海洋锋面亚中尺度过程能有效地将地转能量正向串级至小尺度耗散,在中尺度涡旋能量的耗散过程中扮演着重要作用。风场强迫引起的表面浮力损失是驱动锋面亚中尺度过程的重要机制之一,但不同频率的风应力强迫对锋面亚中尺度过程及其能量的影响与机制目前仍不清晰。本文通过高分辨率的反气旋涡旋理想数值实验,探讨了风应力频率改变对涡旋亚中尺度能量的影响及其潜在机制。研究结果表明,锋面亚中尺度能量在高频和低频风应力强迫下均受风致混合调控。一种可能的机制是:风应力通过快速调节上层海洋的垂向混合,改变垂向次级环流,影响亚中尺度水平流辐聚,从而调控锋面亚中尺度锋生过程,并最终引起亚中尺度动能变化。进一步的趋势分析结果显示,高频风应力的快速变化更利于通过背景流的水平剪切为亚中尺度动能增长提供能量来源,而低频风应力则通过较强的锋生过程累积锋面强度,更有效地将锋面有效位能转化为动能。该研究结果有助于进一步加深对海洋中尺度涡旋变异及多尺度能量收支过程的动力学理解。

关键词: 涡旋锋面, 风应力频率, 亚中尺度能量, 亚中尺度锋生

Abstract: Frontal submesoscale processes can effectively cascade geostrophic energy forward to small-scale dissipation, playing a crucial role in the energy dissipation of mesoscale eddies. Surface buoyancy loss induced by wind forcing is one of the key mechanisms driving frontal submesoscale processes. However, the impacts and mechanisms of wind stress forcing at different frequencies on frontal submesoscale processes and their energy remain unclear. In this study, we investigate the effects of varying wind stress frequency on the submesoscale energy of an eddy and its potential mechanisms using high-resolution idealized numerical experiments of an anticyclonic eddy. The results show that frontal submesoscale energy is modulated by wind-induced mixing under both high- and low-frequency wind stress forcing. A possible mechanism is that wind stress rapidly adjusts the upper-ocean vertical mixing, which alters the vertical secondary circulation and affects submesoscale horizontal flow convergence, thereby modulating the frontal submesoscale frontogenesis process and ultimately leading to changes in submesoscale kinetic energy. Further trend analysis reveals that the rapid variations of high-frequency wind stress are more conducive to sourcing energy for the growth of submesoscale kinetic energy from the horizontal shear of the background flow. In contrast, low-frequency wind stress accumulates frontal intensity through a stronger frontogenesis process, more effectively converting frontal available potential energy into kinetic energy. These findings contribute to a deeper dynamical understanding of the variability of oceanic mesoscale eddies and the processes of the multi-scale energy budget.

Key words: Eddy front, Wind frequency, Submesoscale energy, Submesoscale frontogenesis