热带海洋学报 ›› 2025, Vol. 44 ›› Issue (4): 187-199.doi: 10.11978/2024141CSTR: 32234.14.2024141
胡鑫1(), 熊兰兰1(
), 陈顺洋2, 张黄琛1, 邹易阳1, 张吉超1, 刘东熙1, 何佳潞1, 吴于琪1, 朱振杰1
收稿日期:
2024-07-18
修回日期:
2024-08-02
出版日期:
2025-07-10
发布日期:
2025-07-31
通讯作者:
胡鑫, 熊兰兰
作者简介:
胡鑫(1993—), 男, 江西省吉安市人, 博士, 从事海洋生态学研究。email: huxinest@163.com
*感谢惠州市林业局、惠东县林业局、惠东县自然资源局和惠东县好招楼湿地公园管理处对本研究的支持
基金资助:
HU Xin1(), XIONG Lanlan1(
), CHEN Shunyang2, ZHANG Huangchen1, ZOU Yiyang1, ZHANG Jichao1, LIU Dongxi1, HE Jialu1, WU Yuqi1, ZHU Zhenjie1
Received:
2024-07-18
Revised:
2024-08-02
Online:
2025-07-10
Published:
2025-07-31
Contact:
HU Xin, XIONG Lanlan
Supported by:
摘要:
随着全球气候变化日益加剧, 红树林作为重要的滨海蓝碳生态系统备受关注。本研究旨在构建幼龄红树生物量模型, 评估广东考洲洋红树林碳储量, 为快速准确评估人工营造幼林红树林碳储量提供经验方法和科学依据。以考洲洋幼龄白骨壤(Avicennia marina)、红海榄(Rhizophora stylosa)、秋茄(Kandelia obovata)、木榄(Bruguiera gymnorhiza)和桐花树(Aegiceras corniculatum)为研究对象, 使用基径(basal diameter, D)和株高(height, H)及其派生的复合变量构建红树植物生物量与测树因子之间最佳拟合模型, 并进一步评估考洲洋幼林红树林生态系统碳储量。研究发现, 复合变量生物量模型优于单一变量生物量模型(桐花树地下生物量模型除外)。白骨壤、红海榄、木榄和桐花树最优生物量模型均为幂函数模型, 秋茄最优生物量模型为线性模型。考洲洋人工营造幼林红树林碳密度为(91.26±17.32)Mg C·hm-2, 碳储量约为35964.65Mg C, 土壤碳库占考洲洋幼林红树林碳库78.3%~98.5%。红树植物碳密度从大到小依次为桐花+秋茄群落、红海榄+白骨壤群落、白骨壤群落、木榄群落。本研究结果对广东乃至全国人工营造红树林碳储量评估和生态修复具有重要参考价值。
中图分类号:
胡鑫, 熊兰兰, 陈顺洋, 张黄琛, 邹易阳, 张吉超, 刘东熙, 何佳潞, 吴于琪, 朱振杰. 幼龄红树生物量模型及幼林红树林碳储量研究*[J]. 热带海洋学报, 2025, 44(4): 187-199.
HU Xin, XIONG Lanlan, CHEN Shunyang, ZHANG Huangchen, ZOU Yiyang, ZHANG Jichao, LIU Dongxi, HE Jialu, WU Yuqi, ZHU Zhenjie. Study on biomass models of juvenile mangroves and carbon storage in young mangrove ecosystems*[J]. Journal of Tropical Oceanography, 2025, 44(4): 187-199.
表1
红树植物样本基本因子统计量"
树种 | 基径/cm | 株高/m | 树龄/a | 地上生物量/kg | 地下生物量/kg | 地上碳密度系数/% | 地下碳密度系数/% |
---|---|---|---|---|---|---|---|
红海榄 | 1.05~4.14 | 0.46~1.73 | 1~5 | 0.012~1.416 | 0.002~1.069 | 43.79~44.66 | 31.66~40.61 |
白骨壤 | 0.70~3.60 | 0.36~1.63 | 1~5 | 0.004~1.531 | 0.001~0.570 | 41.87~44.55 | 35.47~38.79 |
桐花树 | 0.60~3.30 | 0.32~0.91 | 1~3 | 0.002~0.326 | 0.001~0.104 | 36.67~40.39 | 35.96~42.20 |
木榄 | 0.96~3.76 | 0.32~1.03 | 1~3 | 0.006~0.437 | 0.001~0.131 | 43.06~43.93 | 31.28~37.26 |
秋茄 | 0.65~14.32 | 0.36~2.15 | 1~5 | 0.006~3.822 | 0.003~2.215 | 39.28~46.54 | 32.45~40.60 |
表2
幼龄红树植物生物量模型构建"
树种 | 自变量 | 因变量 | R | P | 回归模型 | RSS | AIC | RMSE |
---|---|---|---|---|---|---|---|---|
红海榄地上 生物量模型 | D | Wt | 0.88 | <0.01 | Wt = 0.0094×D3.0878 | 0.62 | -114.33 | 0.14 |
Wt | 0.53 | <0.01 | Wt = 0.2358×D-0.3383 | 0.88 | -103.79 | 0.17 | ||
H | Wt | 0.61 | <0.01 | Wt = 0.1037×H3.072 | 0.84 | -105.40 | 0.17 | |
Wt | 0.54 | <0.01 | Wt = 0.6918×H-0.493 | 0.86 | -104.52 | 0.17 | ||
DH | Wt | 0.88 | <0.01 | Wt = 0.0269×(DH)1.8155 | 0.28 | -135.97 | 0.10 | |
Wt | 0.77 | <0.01 | Wt = 0.1608×(DH)-0.1843 | 0.44 | -122.53 | 0.12 | ||
D2H | Wt | 0.90 | <0.01 | Wt = 0.0175×(D2H)1.1779 | 0.23 | -136.10 | 0.11 | |
Wt | 0.83 | <0.01 | Wt = 0.0388×(D2H)-0.0554 | 0.33 | -131.72 | 0.10 | ||
DH | Wt | 0.82 | <0.01 | Wt = 0.0434×(DH2)1.197 | 0.34 | -130.33 | 0.11 | |
Wt | 0.89 | <0.01 | Wt = 0.1037×(DH2)-0.0841 | 0.29 | -136.58 | 0.11 | ||
红海榄地下 生物量模型 | D | Wd | 0.88 | <0.01 | Wd = 0.0022×D3.4548 | 0.61 | -115.09 | 0.14 |
Wd | 0.41 | <0.01 | Wd = 0.1651×D-0.2747 | 0.63 | -113.83 | 0.15 | ||
H | Wd | 0.56 | <0.01 | Wd = 0.0356×H2.4809 | 0.88 | -103.94 | 0.17 | |
Wd | 0.34 | <0.01 | Wd = 0.3549×H-0.2487 | 0.70 | -110.59 | 0.15 | ||
DH | Wd | 0.84 | <0.01 | Wd = 0.0097×(DH)1.752 | 0.59 | -113.90 | 0.14 | |
Wd | 0.62 | <0.01 | Wd = 0.108×(DH)-0.1492 | 0.71 | -124.90 | 0.12 | ||
D2H | Wd | 0.90 | <0.01 | Wd = 0.0056×(D2H)1.2153 | 0.53 | -146.91 | 0.13 | |
Wd | 0.76 | <0.01 | Wd = 0.0289×(D2H)-0.0791 | 0.75 | -139.11 | 0.09 | ||
DH | Wd | 0.76 | <0.01 | Wd = 0.0164×(DH2)0.7605 | 0.93 | -100.30 | 0.18 | |
Wd | 0.78 | <0.01 | Wd = 0.0718×(D2H)-0.0876 | 0.74 | -141.31 | 0.09 | ||
白骨壤地上 生物量模型 | D | Wt | 0.92 | <0.01 | Wt = 0.0182×D3.7886 | 2.35 | -74.44 | 0.28 |
Wt | 0.68 | <0.01 | Wt = 0.4464×D-0.4502 | 1.56 | -86.62 | 0.23 | ||
H | Wt | 0.74 | <0.01 | Wt = 0.2047×H3.722 | 0.87 | -104.18 | 0.17 | |
Wt | 0.73 | <0.01 | Wt = 0.9049×H-0.4899 | 1.30 | -92.09 | 0.21 | ||
DH | Wt | 0.93 | <0.01 | Wt = 0.0595×(DH)2.1007 | 1.12 | -94.54 | 0.19 | |
Wt | 0.88 | <0.01 | Wt = 0.28×(DH)-0.1703 | 0.59 | -113.80 | 0.14 | ||
D2H | Wt | 0.95 | <0.01 | Wt = 0.0383×(D2H)1.3822 | 0.71 | -131.98 | 0.14 | |
Wt | 0.84 | <0.01 | Wt = 0.0844×(D2H)-0.0159 | 0.75 | -106.71 | 0.16 | ||
DH | Wt | 0.89 | <0.01 | Wt = 0.0931×(DH2)1.3826 | 0.63 | -112.00 | 0.14 | |
Wt | 0.91 | <0.01 | Wt = 0.1705×(DH2)-0.0315 | 0.43 | -123.03 | 0.12 | ||
白骨壤地下 生物量模型 | D | Wd | 0.93 | <0.01 | Wd = 0.01×D3.145 | 0.20 | -148.92 | 0.08 |
Wd | 0.61 | <0.01 | Wd = 0.1179×D-0.0983 | 0.17 | -152.36 | 0.08 | ||
H | Wd | 0.80 | <0.01 | Wd = 0.1062×H3.4719 | 0.18 | -176.96 | 0.05 | |
Wd | 0.75 | <0.01 | Wd = 0.2913×H-0.1313 | 0.11 | -165.76 | 0.06 | ||
DH | Wd | 0.93 | <0.01 | Wd = 0.031×(DH)1.7634 | 0.14 | -156.55 | 0.07 | |
Wd | 0.79 | <0.01 | Wd = 0.0803×(DH)-0.0281 | 0.10 | -168.47 | 0.06 | ||
D2H | Wd | 0.94 | <0.01 | Wd = 0.0206×(D2H)1.144 | 0.12 | -163.05 | 0.09 | |
Wd | 0.74 | <0.01 | Wd =0.0239×(D2H)+0.0099 | 0.12 | -162.04 | 0.06 | ||
DH | Wd | 0.90 | <0.01 | Wd = 0.0473×(DH2)1.1905 | 0.17 | -150.86 | 0.08 | |
Wd | 0.83 | <0.01 | Wd =0.0526×(D2H)+0.0067 | 0.08 | -175.10 | 0.05 | ||
桐花树地上 生物量模型 | D | Wt | 0.90 | <0.01 | Wt = 0.011×D2.3301 | 0.03 | -208.12 | 0.03 |
Wt | 0.57 | <0.01 | Wt = 0.0704×D-0.0731 | 0.04 | -196.34 | 0.04 | ||
H | Wt | 0.33 | <0.01 | Wt = 0.1184×H2.1268 | 0.07 | -179.13 | 0.05 | |
Wt | 0.24 | <0.01 | Wt = 0.1877×H-0.0587 | 0.13 | -161.70 | 0.07 | ||
桐花树地上 生物量模型 | DH | Wt | 0.84 | <0.01 | Wt = 0.0378×(DH)1.5403 | 0.02 | -210.19 | 0.03 |
Wt | 0.67 | <0.01 | Wt = 0.0825×(DH)-0.0402 | 0.03 | -202.75 | 0.03 | ||
D2H | Wt | 0.90 | <0.01 | Wt = 0.0227×(D2H)0.9647 | 0.02 | -214.66 | 0.03 | |
Wt | 0.84 | <0.01 | Wt = 0.0275×(D2H)-0.0109 | 0.02 | -203.74 | 0.02 | ||
DH | Wt | 0.71 | <0.01 | Wt = 0.065×(DH2)1.0197 | 0.03 | -199.39 | 0.03 | |
Wt | 0.68 | <0.01 | Wt = 0.0881×(DH2)-0.0127 | 0.03 | -203.57 | 0.03 | ||
桐花树地下 生物量模型 | D | Wd | 0.90 | <0.01 | Wd = 0.0038×D2.4588 | 0.00 | -299.13 | 0.01 |
Wd | 0.65 | <0.01 | Wd = 0.0241×D-0.0234 | 0.00 | -269.91 | 0.01 | ||
H | Wd | 0.36 | <0.01 | Wd = 0.0462×H2.2983 | 0.00 | -250.07 | 0.01 | |
Wd | 0.31 | <0.01 | Wd = 0.0662×H-0.0201 | 0.00 | -249.42 | 0.02 | ||
DH | Wd | 0.84 | <0.01 | Wd = 0.0143×(DH)1.5553 | 0.00 | -288.83 | 0.01 | |
Wd | 0.74 | <0.01 | Wd = 0.0272×(DH)-0.0104 | 0.00 | -276.19 | 0.01 | ||
D2H | Wd | 0.88 | <0.01 | Wd = 0.0084×(D2H)0.9858 | 0.00 | -296.93 | 0.01 | |
Wd | 0.88 | <0.01 | Wd = 0.009×(D2H)-0.0008 | 0.00 | -299.49 | 0.01 | ||
DH | Wd | 0.70 | <0.01 | Wd = 0.0247×(DH2)1.0295 | 0.00 | -275.08 | 0.01 | |
Wd | 0.74 | <0.01 | Wd = 0.0293×(D2H)-0.0017 | 0.00 | -276.52 | 0.01 | ||
木榄地上 生物量模型 | D | Wt | 0.73 | <0.01 | Wt = 0.0043×D3.6814 | 0.05 | -191.85 | 0.04 |
Wt | 0.87 | <0.01 | Wt = 0.1475×D-0.1976 | 0.04 | -199.76 | 0.03 | ||
H | Wt | 0.86 | <0.01 | Wt = 0.2561×H3.4544 | 0.12 | -164.76 | 0.06 | |
Wt | 0.58 | <0.01 | Wt = 0.3593×H-0.1392 | 0.12 | -163.59 | 0.06 | ||
DH | Wt | 0.95 | <0.01 | Wt = 0.0353×(DH)2.1235 | 0.04 | -199.35 | 0.04 | |
Wt | 0.88 | <0.01 | Wt = 0.1151×(DH)-0.0631 | 0.04 | -198.12 | 0.03 | ||
D2H | Wt | 0.91 | <0.01 | Wt = 0.0158×(D2H)1.413 | 0.06 | -184.64 | 0.04 | |
Wt | 0.93 | <0.01 | Wt = 0.0333×(D2H)-0.0128 | 0.06 | -200.10 | 0.03 | ||
DH | Wt | 0.95 | <0.01 | Wt = 0.0767×(DH2)1.3609 | 0.06 | -184.47 | 0.04 | |
Wt | 0.83 | <0.01 | Wt = 0.1054×(DH2)-0.0152 | 0.05 | -188.28 | 0.04 | ||
木榄地下 生物量模型 | D | Wd | 0.57 | <0.01 | Wd = 0.0013×D3.8032 | 0.01 | -228.58 | 0.02 |
Wd | 0.78 | <0.01 | Wd = 0.0452×D-0.0568 | 0.01 | -249.71 | 0.02 | ||
H | Wd | 0.92 | <0.01 | Wd = 0.1168×H4.2022 | 0.01 | -226.94 | 0.02 | |
Wd | 0.67 | <0.01 | Wd = 0.1263×H-0.049 | 0.01 | -238.25 | 0.02 | ||
DH | Wd | 0.88 | <0.01 | Wd = 0.0106×(DH)2.4009 | 0.02 | -216.43 | 0.03 | |
Wd | 0.84 | <0.01 | Wd = 0.0369×(DH)-0.0177 | 0.00 | -258.62 | 0.01 | ||
D2H | Wd | 0.80 | <0.01 | Wd = 0.0044×(D2H)1.5536 | 0.02 | -213.67 | 0.03 | |
Wd | 0.83 | <0.01 | Wd = 0.0102×(D2H)-0.0004 | 0.01 | -255.70 | 0.01 | ||
DH | Wd | 0.93 | <0.01 | Wd = 0.026×(DH2)1.5795 | 0.02 | -251.75 | 0.02 | |
Wd | 0.80 | <0.01 | Wd =0.0338×(D2H)-0.0025 | 0.01 | -251.02 | 0.01 | ||
秋茄地上 生物量模型 | D | Wt | 0.91 | <0.01 | Wt = 0.0243×D2.0144 | 4.83 | -52.82 | 0.40 |
Wt | 0.82 | <0.01 | Wt = 0.274×D-0.4659 | 3.23 | -64.85 | 0.33 | ||
H | Wt | 0.87 | <0.01 | Wt = 0.2833×H3.4024 | 6.38 | -44.44 | 0.46 | |
Wt | 0.66 | <0.01 | Wt = 1.7532×H-1.1884 | 6.51 | -43.82 | 0.47 | ||
DH | Wt | 0.95 | <0.01 | Wt = 0.0569×(DH)1.3385 | 1.21 | -92.22 | 0.20 | |
Wt | 0.96 | <0.01 | Wt = 0.1588×(DH)-0.1618 | 0.83 | -103.62 | 0.17 | ||
D2H | Wt | 0.94 | <0.01 | Wt = 0.04×(D2H)0.8104 | 2.54 | -70.04 | 0.29 | |
Wt | 0.84 | <0.01 | Wt = 0.011×(D2H)+0.1818 | 3.03 | -64.78 | 0.32 | ||
DH | Wt | 0.95 | <0.01 | Wt = 0.0882×(DH2)0.9796 | 0.58 | -114.47 | 0.14 | |
Wt | 0.97 | <0.01 | Wt = 0.085×(DH2) + 0.0237 | 0.54 | -116.38 | 0.13 | ||
秋茄地下 生物量模型 | D | Wd | 0.95 | <0.01 | Wd = 0.0073×D2.3728 | 4.02 | -58.33 | 0.37 |
Wd | 0.87 | <0.01 | Wd = 0.1571×D-0.2736 | 0.80 | -106.59 | 0.16 | ||
H | Wd | 0.85 | <0.01 | Wd = 0.1209×H3.8117 | 2.58 | -71.63 | 0.29 | |
Wd | 0.60 | <0.01 | Wd = 0.9006×H-0.5968 | 2.38 | -74.00 | 0.28 | ||
DH | Wd | 0.96 | <0.01 | Wd = 0.0202×(DH)1.5373 | 0.71 | -108.20 | 0.15 | |
Wd | 0.97 | <0.01 | Wd = 0.0887×(DH)-0.1029 | 0.20 | -146.39 | 0.08 | ||
D2H | Wd | 0.96 | <0.01 | Wd = 0.0134×(D2H)0.9392 | 1.80 | -80.48 | 0.24 | |
Wd | 0.89 | <0.01 | Wd = 0.0063×(D2H)-0.0678 | 1.20 | -92.60 | 0.20 | ||
DH | Wd | 0.94 | <0.01 | Wd = 0.0334×(DH2)1.1147 | 0.20 | -146.77 | 0.08 | |
Wd | 0.98 | <0.01 | Wd = 0.0473×(D2H)-0.0102 | 0.14 | -156.31 | 0.07 |
表3
调查站位红树林群落特征"
站位 | 物种 | 密度/(ind·hm-2) | 基径/cm | 株高/m |
---|---|---|---|---|
C1 | 白骨壤 | 11067 | 3.17±0.54 | 1.34±0.26 |
红海榄 | 12667 | 2.41±0.58 | 0.70±0.24 | |
C2 | 木榄 | 10667 | 2.46±1.14 | 1.02±0.37 |
C3 | 桐花树 | 11200 | 2.43±0.51 | 0.87±0.11 |
秋茄 | 3600 | 3.80±2.90 | 0.85±0.45 | |
C4 | 白骨壤 | 26000 | 2.08±0.80 | 1.09±0.19 |
C5 | 白骨壤 | 11200 | 2.49±0.38 | 0.77±0.11 |
红海榄 | 22000 | 2.09±0.42 | 0.77±0.08 |
[1] |
董利虎, 李凤日, 2018. 大兴安岭东部主要林分类型乔木层生物量估算模型[J]. 应用生态学报, 29(9): 2825-2834.
|
|
|
[2] |
范航清, 王文卿, 2017. 中国红树林保育的若干重要问题[J]. 厦门大学学报(自然科学版), 56(3): 323-330.
|
|
|
[3] |
高天伦, 管伟, 毛静, 等, 2017. 广东省雷州附城主要红树林群落碳储量及其影响因子[J]. 生态环境学报, 26(6): 985-990.
|
|
|
[4] |
管丽娟, 廖静, 2018. 惠州考洲洋: 用红树林捍卫美丽海湾[J]. 海洋与渔业, (4): 41-42 (in Chinese).
|
[5] |
何琴飞, 郑威, 黄小荣, 等, 2017. 广西钦州湾红树林碳储量与分配特征[J]. 中南林业科技大学学报, 37(11): 121-126.
|
|
|
[6] |
胡平, 向雪莲, 黄子健, 等, 2024. 外来与乡土红树植物群落生物量动态[J]. 应用与环境生物学报, 30(5): 929-934.
|
|
|
[7] |
胡懿凯, 徐耀文, 薛春泉, 等, 2019. 广东省无瓣海桑和林地土壤碳储量研究[J]. 华南农业大学学报, 40(6): 95-103.
|
|
|
[8] |
黄润霞, 吴卓翎, 彭江炜, 等, 2019. 广东红树植物木榄生物量模型[J]. 西北农林科技大学学报(自然科学版), 47(12): 86-94, 103.
|
|
|
[9] |
金川, 王金旺, 郑坚, 等, 2012. 异速生长法计算秋茄红树林生物量[J]. 生态学报, 32(11): 3414-3422.
|
|
|
[10] |
李海奎, 雷渊才, 曾伟生, 2011. 基于森林清查资料的中国森林植被碳储量[J]. 林业科学, 47(7): 7-12.
|
|
|
[11] |
李林锋, 吴小凤, 刘素青, 2015. 湛江5种红树林树种光合作用特性及光合固碳能力研究[J]. 广西植物, 35(6): 825-832.
|
|
|
[12] |
宁世江, 蒋运生, 邓泽龙, 等, 1996. 广西龙门岛群桐花树天然林生物量的初步研究[J]. 植物生态学报, (1): 57-64.
|
|
|
[13] |
覃国铭, 张靖凡, 周金戈, 等, 2023. 广东省红树林土壤碳储量及固碳潜力研究[J]. 热带地理, 43(1): 23-30.
|
|
|
[14] |
汪珍川, 杜虎, 宋同清, 等, 2015. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 35(13): 4462-4472.
|
|
|
[15] |
王友绍, 2021. 全球气候变化对红树林生态系统的影响、挑战与机遇[J]. 热带海洋学报, 40(3): 1-14.
|
|
|
[16] |
武高洁, 郭志华, 郭菊兰, 等, 2014. 红树林异速生长方程估算生物量研究进展[J]. 湿地科学与管理, 10(3): 61-65.
|
|
|
[17] |
吴雪, 赵鑫, 辜伟芳, 等, 2025. 浙南海岸带人工秋茄红树林与互花米草盐沼土壤碳汇对比研究[J]. 热带海洋学报, 44(1): 1-10.
|
|
|
[18] |
辛琨, 颜葵, 李真, 等, 2014. 海南岛红树林湿地土壤有机碳分布规律及影响因素研究[J]. 土壤学报, 51(5): 1078-1086.
|
|
|
[19] |
鄢春梅, 李文凤, 谢绍茂, 2021. 美丽海湾建设背景下考洲洋海岸带整治与生态修复实践[J]. 广东园林, 43(3): 61-65.
|
|
|
[20] |
姚正阳, 刘建军, 2014. 西安市4种城市绿化灌木单株生物量估算模型[J]. 应用生态学报, 25(1): 111-116.
|
|
|
[21] |
周治刚, 岳文, 李辉权, 等, 2024. 树种类型和潮滩高程对广东湛江高桥红树林碳储量的影响[J]. 热带海洋学报, 43(2): 108-120.
|
|
|
[22] |
朱可峰, 廖宝文, 章家恩, 2011. 广州市南沙红树植物无瓣海桑、木榄人工林生物量的研究[J]. 林业科学研究, 24(4): 531-536.
|
|
|
[23] |
朱耀军, 郭菊兰, 武高洁, 2012. 红树林湿地有机碳研究进展[J]. 生态学杂志, 31(10): 2681-2687.
|
|
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[1] | 李达, 王云忠, 齐继光, 杨翠华. 水质变化对豆荚软珊瑚(Lobophytum sp.)共生藻(Symbiodiniaceae)、菌群落结构的影响[J]. 热带海洋学报, 2025, 44(4): 136-144. |
[2] | 洪义国, 张宝善, 吴佳鹏, 龙爱民. 河口近海N2O的分布特征及微生物代谢驱动机制[J]. 热带海洋学报, 2025, 44(4): 1-13. |
[3] | 陈建勇. 厦门杏林湾沉积物有机质、氮、磷污染空间分布及治理对策[J]. 热带海洋学报, 2025, 44(4): 200-209. |
[4] | 黄皓晨, 柯志新, 周志希, 周伟华. 南澳岛周边海域表层海水营养盐分布及富营养化特征[J]. 热带海洋学报, 2025, 44(2): 196-207. |
[5] | 王荣霞, 陈娴, 陈丹丹, 陈晓慧, 梁计林. 海南麒麟菜保护区大型海藻分布特征及碳储量研究[J]. 热带海洋学报, 2025, 44(1): 182-188. |
[6] | 李为华, 李九发, 张文祥. 水体悬沙浓度连续测量技术研究综述[J]. 热带海洋学报, 2022, 41(4): 20-30. |
[7] | 苏金洙, 邹嘉澍, 苏玉萍, 张明峰, 翁蓁洲, 杨小强. 福建平潭近海赤潮预警模型研究*[J]. 热带海洋学报, 2022, 41(4): 172-180. |
[8] | 方周, 谭飞, 杨红强, 徐辉龙, 徐向荣, 李恒翔. 西沙海域甘泉岛和全富岛海滩上的塑料垃圾与微塑料分布特征[J]. 热带海洋学报, 2021, 40(5): 123-133. |
[9] | 王会芳, 黄秀清, 刘建华, 徐美娜, 蒋芸芸, 邱桔斐. 福建海坛海峡赤潮灾害潜在生态风险评估[J]. 热带海洋学报, 2021, 40(4): 122-133. |
[10] | 石泳昊, 贾良文, 张恒, 林怡彤. 湛江湾内湾环境容量计算与排污治理[J]. 热带海洋学报, 2021, 40(4): 134-142. |
[11] | 潘翠红, 夏丽华, 吴志峰, 王猛, 解学通, 王芳. 柘林湾近岸水产养殖区水域叶绿素a浓度反演[J]. 热带海洋学报, 2021, 40(1): 142-153. |
[12] | 孟钊, 李宁, 管玉平, 冯洋. 南海与周边海域表层塑料颗粒交换的拉格朗日示踪研究[J]. 热带海洋学报, 2020, 39(5): 109-116. |
[13] | 赵聪蛟, 刘希真, 付声景, 姚炜民, 周燕, 马骏. 基于水质浮标在线监测的米氏凯伦藻赤潮过程及环境因子变化特征分析[J]. 热带海洋学报, 2020, 39(2): 88-97. |
[14] | 庄晓珊, 桓清柳, 彭莹, 王节亮, 庞仁松, 周凯. 深圳东部近岸海域溶解氧的时空分布特征[J]. 热带海洋学报, 2018, 37(5): 98-105. |
[15] | 曹文熙, 孙兆华, 李彩, 邹国旺. 水质监测浮标及其传感器的防污染措施[J]. 热带海洋学报, 2018, 37(5): 7-12. |
|