1 李春峰, 周祖翼, 李家彪, 等, 2007. 台湾岛南部海域的前碰撞构造地球物理特征[J]. 中国科学 D辑(地球科学), 37(5): 649-659. LI C F, ZHOU Z Y, LI J B, et al, 2007. Precollisional tectonics and terrain amalgamation offshore southern Taiwan: Charac- terizations from reflection seismic and potential field data[J]. Science in China Series D: Earth Sciences, 37(5), 649-659. 2 李家彪, 金翔龙, 阮爱国, 等, 2004. 马尼拉海沟增生楔中段的挤入构造[J]. 科学通报, 49(10): 1000-1008. LI J B, JIN X L, RUAN A G, et al, 2004. Indentation tectonics in the accretionary wedge of middle Manila Trench [J]. Chinese Science Bulletin, 49(10): 1000-1008. 3 丘学林, 赵明辉, 徐辉龙, 等, 2012. 南海深地震探测的重要科学进程: 回顾和展望[J]. 热带海洋学报, 31(3): 1-8. QIU X L, ZHAO M H, XU H L, et al, 2012. Important processes of deep seismic surveys in the South China Sea: Retrospection and expectation [J]. Journal of Tropical Oceanography, 31(3): 1-8. 4 孙金龙, 徐辉龙, 曹敬贺, 2011. 台湾—吕宋会聚带的地壳运动特征及其动力学机制[J]. 地球物理学报, 54(12): 3016-3025. SUN J L, XU H L, CAO J H, 2012. Crustal movement and its dynamic mechanism of the Taiwan-Luzon convergent zone [J]. Chinese J. Geophys, 54(12): 3016-3025. 5 田丽艳, 2003. 马里亚纳海槽热液活动区玄武岩岩石地球化学研究[D]. 青岛: 中国海洋大学: 1-72. TIAN L Y, 2003. The study of petrological geochemistry of basalts from hyrothermal fields, Mariana Trough[D]. Qingdao: Ocean University of China: 1-72. 6 赵明辉, 丘学林, 夏少红, 等, 2008. 大容量气枪震源及其波形特征[J]. 地球物理学报, 51(2): 558-565. ZHAO M H, QIU X L, XIA S H, et al, 2008. Large volume air~gun sources and its seismic waveform characters[J]. Chinese J Geophys, 51(2): 558-565. 7 ARCULUS R, ISHIZUKA O, BOGUS K A, 2013. Izu-Bonin- Mariana arc origins: continental crust formation at intraoceanic arc: foundations, inceptions, and early evolution [R/OL]. IODP Sci Prosp, 351. [2015-04-16] doi:10.2204/ iodp.sp.351.2013. http://publications.iodp.org/scientific_prospectus/351/ 8 BIRD P, 2003. An updated digital model of plate boundaries [J/OL]. Geochem Geophys Geosyst, 4(3): 1-52. [2015-04-16]. http://dx.doi.org/ 10.1029/2001GC000252. 9 BLOOMER S H, STERN R J, FISK E, et al, 1989. Shoshonitic volcanism in the northern Mariana arc 1. Mineralogic and major and trace element characteristics[J]. J Geophys Res, 94(B4): 4469-4496. 10 CALVERT A J, KLEMPERER S L, TAKAHASHI N, et al, 2008. Three-dimensional crustal structure of the Mariana island arc from seismic tomography[J]. J Geophys Res, 113(B1): 1-24. doi:10.1029/2007JB004939. 11 CALVERT A J, 2011. The seismic structure of island arc crust[M] // BROWN D, RYAN P D. Arc-continent collision. Berlin: Springer Berlin Heidelberg: 87-119. 12 CHRISTENSEN N I, MOONEY W D, 1995. Seismic velocity structure and composition of the continental crust: A global view [J]. J Geophys Res, 100(B6): 9761-9788. doi:10.1029/ 95JB00259. 13 EAKIN D H, MCINTOSH K D, VAN AVENDONK H J A, et al, 2014. Crustal‐scale seismic profiles across the Manila subduction zone: The transition from intraoceanic subduction to incipient collision[J]. Journal of Geophysical Research: Solid Earth, 119(1): 1-17. 14 FACCENDA M, GERYA T V, MANCKTELOW, N S, et al, 2012. Fluid flow during slab unbending and dehydration: implications for intermediate-depth seismicity, slab weakening and deep water recycling[J]. Geochem Geophys Geosyst, 13(1): 1-23. 15 FACCENDA M, 2014. Water in the slab: A trilogy[J]. Tectonophysics, 614: 1-30. 16 GVIRTZMAN Z, STERN R J, 2004. Bathymetry of Mariana trench-arc system and formation of the Challenger Deep as a consequence of weak plate coupling [J]. Tectonics, 23(2), 1-15. doi:10.1029/2003TC001581 17 KEY K, 2012. Marine electromagnetic studies of seafloor resources and tectonics [J]. Surveys in Geophysics, 33(1): 135-167. doi:10.1007/s10712-011-9139-x. 18 KEY K, CONSTABLE S, LIU L, et al, 2013. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise [J]. Nature, 495(7442): 499-502. 19 KODAIRA S, SATO T, TAKAHASHI N, et al, 2007a. New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc[J]. Geology, 35(11): 1031-1034. doi:10.1130/G23901A. 20 KODAIRA S, SATO T, TAKAHASHI N, et al, 2007b. Seismological evidence for variable growth of crust along the Izu intraoceanic arc[J]. J Geophys Res, 112: 1-25. doi:10.1029/2006JB004593. 21 LESTER R, MCINTOSH K, AVENDONK H V, et al, 2013. Crustal accretion in the Manila trench accretionary wedge at the transition from subduction to mountain-building in Taiwan [J]. Earth Planet Sci Lett, 375: 430-440. 22 MATSUNO T, SEAMA N, EVANS R L, et al, 2010. Upper mantle electrical resistivity structure beneath the central Mariana subduction system [J]. Geochemistry, Geophysics, Geosystems, 11(9): 5424-5425. 23 NAIF S, KEY K, CONSTABLE S, et al, 2013. Melt-rich channel observed at the lithosphere-asthenosphere boundary [J]. Nature, 495(7441): 356-359. 24 PEARCE J A, REAGAN M K, STERN R J, et al, 2013. Izu-Bonin-Mariana fore arc: testing subduction initiation and ophiolite models by drilling the outer Izu-Bonin-Mariana fore arc [R/OL]. IODP Sci Prosp, 352. [2015-04-16]. doi:10. 14379/iodp.sp.352.2013. http://publications.iodp.org/scientific_ prospectus/352/ 25 RUDNICK R L, FOUNTAIN D M, 1995. Nature and composition of the continental crust: a lower crustal perspective [J]. Reviews of geophysics, 33(3): 267-309. 26 STERN R J, 2002. Subduction zones [J]. Reviews of Geophysics, 40(4): 1012. doi:10.1029/2001RG000108. 27 SUYEHIRO K, TAKAHASHI N, ARIIE Y, et al, 1996. Continental crust, crustal underplating and low-Q upper mantle beneath an oceanic island arc [J]. Science, 272: 390-392. doi:10.1126/ science.272.5260.390. 28 TAKAHASHI N, KODAIRA S, TATSUMI Y, et al, 2008. Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc-back-arc system [J]. J Geophys Res, 113: B01104. doi:10. 1029/2007JB005120. 29 TAKAHASHI N, KODAIRA S, TATSUMI Y, et al, 2009. Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-back arc system [J]. Geochem Geophys Geosyst, 10(9): 1-28. 30 TAMURA Y, BUSBY C, BLUM P, 2013. Izu-Bonin-Mariana Rear Arc: The missing half of the subduction factory [R/OL]. IODP Sci Prosp, 350. [2015-04-16]. doi:10.2204/iodp.sp.350.2013. http://publications.iodp.org/scientific_prospectus/350/ 31 TATSUMI Y, SHUKUNO H, TANI K, et al, 2008. Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution [J]. J Geophys Res, 113(B02203): 1-19. doi:10.1029/2007JB005121. 32 TIBI R, WIENS D A, SHIOBARA H, et al, 2006. Depth of the 660-km discontinuity near the Mariana slab from an array of ocean bottom seismographs[J]. Geophysical Research Letters, 33(2): 1-4. doi:10.1029/ 2005GL024523. 33 TOH H, BABA K, ICHIKI M, et al, 2006. Two-dimensional electrical section beneath the eastern margin of Japan Sea [J]. Geophys Res Lett, 33(22): L22309. 34 WESSEL P, SMITH W H F, 1995. New version of the Generic Mapping Tools released, EOS Trans[J]. AGU, 76: 329. 35 WORZEWSKI T, JEGEN M, KOPP H, et al, 2010. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone [J]. Nature Geoscience, 4(2): 108-111. 36 YU H S, 2000. Closure of Manila Trench north of Latitude 21°N in transition of passive-convergent margin south of Taiwan[J]. Acta Oceanographica Taiwanica, 38(2): 115-127. 37 YUASA M, NOHARA M, 1992. Petrographic and geochemical along-arc variations of volcanic rocks on the volcanic front of the Izu-Ogasawara (Bonin) Arc[J]. Geological Survey of Japan Bulletin, 43: 421-456. |