热带海洋学报 ›› 2022, Vol. 41 ›› Issue (1): 158-170.doi: 10.11978/2021027CSTR: 32234.14.2021027
王雪松1,3,4(), 陈忠2(
), 许安涛5, 田雨杭1,2,4, 曹立1,3,4, 张斌1,2,3,4
收稿日期:
2021-02-26
修回日期:
2021-04-20
出版日期:
2022-01-10
发布日期:
2021-04-29
通讯作者:
陈忠
作者简介:
王雪松(1995—), 男, 河南周口人, 硕士研究生, 主要从事海洋沉积过程及环境变化研究。email: 基金资助:
WANG Xuesong1,3,4(), CHEN Zhong2(
), XU Antao5, TIAN Yuhang1,2,4, CAO Li1,3,4, ZHANG Bin1,2,3,4
Received:
2021-02-26
Revised:
2021-04-20
Online:
2022-01-10
Published:
2021-04-29
Contact:
CHEN Zhong
Supported by:
摘要:
南海东北部深海盆底流演变受多种因素控制, 但目前对末次冰盛期以来底流的敏感指标、演变过程及其控制因素还缺乏深入认识。本文选取南海东北部深水区16ZBS11岩心开展陆源碎屑粒度测试和年龄测定, 通过粒级-标准偏差法提取环境敏感因子, 并计算底流强度及搬运能力。研究结果表明, 研究区陆源碎屑主要由粉砂和粘土组成, 砂组分仅在部分层位出现。南海东北部深海沉积环境经历了3个演化阶段, 第Ⅰ阶段为22.39~16.02ka BP, 第Ⅱ阶段为16.02~9.58ka BP, 第Ⅲ阶段为9.58ka BP至今, 各阶段粘土和粉砂组分均呈反相演变过程。海平面变化是深海沉积和海洋过程的重要影响因素, 末次冰盛期以来南海东北部深海盆底流强度和搬运能力逐渐减弱并呈同步变化, 16ka BP、11.5ka BP后南海分别与印度洋、台湾海峡连通, 影响了南海北部的海洋过程。特别是9.58ka BP以来南海北部海洋混合方式和强度的改变, 深刻影响着深海陆源碎屑的输运及沉积演化。本文研究结果为深入认识南海北部底流活动演变和南海深海过程提供了新证据。
中图分类号:
王雪松, 陈忠, 许安涛, 田雨杭, 曹立, 张斌. 南海东北部深海盆末次冰盛期以来陆源碎屑粒度特征及影响因素*[J]. 热带海洋学报, 2022, 41(1): 158-170.
WANG Xuesong, CHEN Zhong, XU Antao, TIAN Yuhang, CAO Li, ZHANG Bin. Grain size characteristics and influencing factors of terrigenous sediment in the deep-sea basin of the northeastern South China Sea since the Last Glacial Maximum[J]. Journal of Tropical Oceanography, 2022, 41(1): 158-170.
表2
16ZBS11岩心的陆源碎屑粒度组成及各阶段粒度参数特征"
砂/% | 粉砂/% | 粘土/% | 平均粒径/μm | 中值粒径/μm | 偏态值SKI | 峰态值KG | 分选系数σi | ||
---|---|---|---|---|---|---|---|---|---|
阶段Ⅰ | 最大值 | 1.45 | 70.84 | 35.58 | 6.42 | 6.69 | -0.06 | 1.14 | 1.43 |
最小值 | 0.00 | 64.42 | 28.99 | 5.24 | 5.40 | -0.12 | 1.09 | 1.23 | |
平均值 | 0.31 | 67.13 | 32.59 | 5.78 | 6.01 | -0.10 | 1.11 | 1.36 | |
阶段Ⅱ | 最大值 | 1.63 | 67.44 | 41.73 | 5.87 | 6.07 | -0.04 | 1.15 | 1.42 |
最小值 | 0.00 | 58.28 | 32.24 | 4.43 | 4.69 | -0.16 | 1.08 | 1.16 | |
平均值 | 0.31 | 62.76 | 37.12 | 5.06 | 5.28 | -0.11 | 1.11 | 1.27 | |
阶段Ⅲ | 最大值 | 0.81 | 64.48 | 42.24 | 5.45 | 5.65 | -0.07 | 1.15 | 1.37 |
最小值 | 0.00 | 57.76 | 34.75 | 4.40 | 4.65 | -0.15 | 1.09 | 1.15 | |
平均值 | 0.10 | 61.68 | 38.27 | 4.85 | 5.09 | -0.12 | 1.11 | 1.23 |
[1] | 黄维, 汪品先, 1998. 末次冰期以来南海深水区的沉积速率[J]. 中国科学 D辑: 地球科学, 28(1): 13-17. |
HUANG WEI, WANG PINXIAN, 1998. A quantitative approach to deep-water sedimentation in the South China Sea: changes since the last glaciation[J]. Science in China Series D: Earth Sciences, 41(2): 195. | |
[2] | 黄维, 汪品先, 2006. 渐新世以来的南海沉积量及其分布[J]. 中国科学 D辑: 地球科学, 36(9): 822-829. |
HUANG WEI, WANG PINXIAN, 2006. Sediment mass and distribution in the South China Sea since the Oligocene[J]. Science in China Series D: Earth Sciences, 49(11): 1147-1155. | |
[3] | 翦知湣, 田军, 黄维, 等, 2020. 南海海盆演变与深部海流[J]. 科技导报, 38(18): 52-56. |
JIAN ZHIMIN, TIAN JUN, HUANG WEI, et al, 2020. Evolution of the South China Sea basin and the deep circulation[J]. Science & Technology Review, 38(18): 52-56. (in Chinese with English abstract) | |
[4] | 蓝东兆, 张维林, 陈承惠, 等, 1993. 晚更新世以来台湾海峡西部的海侵及海平面变化[J]. 海洋学报, 15(4): 77-84. |
LAN DONGZHAO, ZHANG WEILIN, CHEN CHENGHUI, et al, 1993. Transgression and sea level changes in the western part of the Taiwan Strait since the Late Pleistocene[J]. Acta Oceanologica Sinica, 15(4): 77-84. | |
[5] | 李丽, 徐沁, 2017. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展, 32(11): 1126-1136. |
XU QIN, 2017. Review of studies in sea level change of sunda shelf since pliocene[J]. Advances in Earth Science, 32(11): 1126-1136. (in Chinese with English abstract) | |
[6] | 李亮, 陈忠, 刘建国, 等, 2014. 南海北部表层沉积物类型及沉积环境区划[J]. 热带海洋学报, 33(1): 54-61. |
LI LIANG, CHEN ZHONG, LIU JIANGUO, et al, 2014. Distribution of surface sediment types and sedimentary environment divisions in the northern South China Sea[J]. Journal of Tropical Oceanography, 33(1): 54-61. (in Chinese with English abstract) | |
[7] | 李平原, 路剑飞, 夏真, 等, 2020. 南海北部陆坡30 ka以来的沉积环境演变[J]. 海洋地质与第四纪地质, 40(6): 14-21. |
LI PINGYUAN, LU JIANFEI, XIA ZHEN, et al, 2020. Sedimentary environmental evolution for the past 30 ka of the northern continental slope of the South China Sea[J]. Marine Geology & Quaternary Geology, 40(6): 14-21. (in Chinese with English abstract) | |
[8] |
刘志飞, 李夏晶, COLIN C, 等, 2010. 南海北部末次冰盛期以来高分辨率黏土矿物记录及其时间序列物源区分析[J]. 科学通报, 55(29): 2852-2862.
doi: 10.1007/s11434-010-4149-5 |
LIU ZHIFEI, LI XIAJING, COLIN C, et al, 2010. A high-resolution clay mineralogical record in the northern South China Sea since the Last Glacial Maximum, and its time series provenance analysis[J]. Chinese Science Bulletin, 55(35): 4058-4068.
doi: 10.1007/s11434-010-4149-5 |
|
[9] | 刘志飞, 张艳伟, 赵玉龙, 2020. 深海风暴的原位观测[J]. 科技导报, 38(18): 26-29. |
LIU ZHIFEI, ZHANG YANWEI, ZHAO YULONG, 2020. In-situ observations of deep-sea storms[J]. Science & Technology Review, 38(18): 26-29. (in Chinese with English abstract) | |
[10] | 邵磊, 李学杰, 耿建华, 等, 2007. 南海北部深水底流沉积作用[J]. 中国科学 D辑: 地球科学, 37(6): 771-777. |
SHAO LEI, LI XUEJIE, GENG JIANHUA, et al, 2007. Deep water bottom current deposition in the northern South China Sea[J]. Science in China Series D: Earth Sciences, 50(7): 1060-1066. | |
[11] | 石学法, 乔淑卿, 杨守业, 等, 2021. 亚洲大陆边缘沉积学研究进展(2011-2020)[J]. 矿物岩石地球化学通报, 40(2): 319-336. |
SHI XUEFA, QIAO SHUQING, YANG SHOUYE, et al, 2021. Progress in sedimentology research of the Asian continental margin (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(2): 319-336. (in Chinese with English abstract) | |
[12] |
孙有斌, 高抒, 李军, 2003. 边缘海陆源物质中环境敏感粒度组分的初步分析[J]. 科学通报, 48(1): 83-86.
doi: 10.1360/03tb9038 |
SUN YOUBIN, GAO SHU, LI JUN, 2003. Preliminary analysis of grain-size populations with environmentally sensitive terrigenous components in marginal sea setting[J]. Chinese Science Bulletin, 48(2): 184-187.
doi: 10.1360/03tb9038 |
|
[13] |
田纪伟, 曲堂栋, 2012. 南海深海环流研究进展[J]. 科学通报, 57(20): 1827-1832.
doi: 10.1007/s11434-012-5269-x |
TIAN JIWEI, QU TANGDONG, 2012. Advances in research on the deep South China Sea circulation[J]. Chinese Science Bulletin, 57(24): 3115-3120.
doi: 10.1007/s11434-012-5269-x |
|
[14] | 王东晓, 王强, 蔡树群, 等, 2019. 南海中深层动力格局与演变机制研究进展[J]. 中国科学 D辑: 地球科学, 49(12): 1919-1932. |
WANG DONGXIAO, WANG QIANG, CAI SHUQUN, et al, 2019. Advances in research of the mid-deep South China Sea circulation[J]. Science in China Series D: Earth Sciences, 62(12): 1992-2004. | |
[15] | 王桂华, 田纪伟, 2020. 南海深层水的来龙去脉[J]. 科技导报, 38(18): 21-25. |
WANG GUIHUA, TIAN JIWEI, 2020. Origin and development of the deep water in South China Sea[J]. Science & Technology Review, 38(18): 21-25. (in Chinese with English abstract) | |
[16] | 汪品先, 2020. 南海深部过程的探索[J]. 科技导报, 38(18): 6-20. |
WANG PINXIAN, 2020. Exploring the deep sea processes in the South China Sea[J]. Science & Technology Review, 38(18): 6-20 (in Chinese with English abstract). | |
[17] | 王树民, 陈泓君, 钟和贤, 2001. 南海东北部晚第四纪地层不整合的发现及其地质意义[J]. 南海地质研究, 1(10): 55-61. |
WANG SHUMIN, CHEN HONGJUN, ZHONG HEXIAN, 2001. The foundation of late Quaternary strata unconformity and their geological significance in the northeastern South China Seas[J]. Gresearch of Eological South China Sea, 1(10): 55-61. (in Chinese with English abstract) | |
[18] |
张兰兰, 陈木宏, 陈忠, 等, 2010. 南海表层沉积物中的碳酸钙含量分布及其影响因素[J]. 地球科学--中国地质大学学报, 35(6): 891-898.
doi: 10.3799/dqkx.2010.104 |
ZHANG LANLAN, CHEN MUHONG, CHEN ZHONG, et al, 2010. Distribution of calcium carbonate and its controlling factors in surface sediments of the South China Sea[J]. Earth Science-Journal of China University of Geosciences, 35(6): 891-898. (in Chinese with English abstract)
doi: 10.3799/dqkx.2010.104 |
|
[19] | 赵绍华, 刘志飞, 陈全, 等, 2017. 南海北部末次冰期以来深水沉积物组成及其堆积速率的时空变化特征[J]. 中国科学 D辑: 地球科学, 47(8): 958-971. |
ZHAO SHAOHUA, LIU ZHIFEI, CHEN QUAN, et al, 2017. Spatiotemporal variations of deep-sea sediment components and their fluxes since the last glaciation in the northern South China Sea[J]. Science in China Series D: Earth Sciences, 60(7): 1368-1381. | |
[20] | 钟广法, 朱本铎, 王嘹亮, 2020. 南海浊流地貌[J]. 科技导报, 38(18): 75-82. |
ZHONG GUANGFA, ZHU BENDUO, WANG LIAOLIANG, 2020. Turbidity current related landforms in the South China Sea[J]. Science & Technology Review, 38(18): 75-82. (in Chinese with English abstract) | |
[21] |
BLAAUW M, CHRISTEN J A, 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 6(3): 457-474.
doi: 10.1214/ba/1339616472 |
[22] | BOULAY S, COLIN C, TRENTESAUX A, et al, 2003. Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144)[C]// Proceedings of ocean drilling program, scientific results. 1-21. |
[23] |
CAO PENG, SHI XUEFA, LI WEIRAN, et al, 2015. Sedimentary responses to the Indian Summer Monsoon variations recorded in the southeastern Andaman Sea slope since 26 ka[J]. Journal of Asian Earth Sciences, 114: 512-525.
doi: 10.1016/j.jseaes.2015.06.028 |
[24] |
CHEN GENGXIN, WANG DONGXIAO, DONG CHANGMING, et al, 2015a. Observed deep energetic eddies by seamount wake[J]. Scientific Reports, 5: 17416.
doi: 10.1038/srep17416 |
[25] |
CHEN TIANYU, ROBINSON L F, BURKE A, et al, 2015b. Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation[J]. Science, 349(6255): 1537-1541.
doi: 10.1126/science.aac6159 |
[26] |
DIETZE E, HARTMANN K, DIEKMANN B, et al, 2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 243-244: 169-180.
doi: 10.1016/j.sedgeo.2011.09.014 |
[27] |
FOLK R L, WARD W C, 1957. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 27(1): 3-26.
doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D |
[28] | GAO S, COLLINS M B, 1994. Analysis of grain size trends, for defining sediment transport pathways in marine environments[J]. Journal of Coastal Research, 10(1): 70-78. |
[29] |
HALL I R, MCCAVE I N, SHACKLETON N J, et al, 2001. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times[J]. Nature, 412(6849): 809-812.
doi: 10.1038/35090552 |
[30] | HALL I R, MCCAVE I N, ZAHN R, et al, 2003. Paleocurrent reconstruction of the deep Pacific inflow during the middle Miocene: reflections of East Antarctic Ice Sheet growth[J]. Paleoceanography, 18(2): 1040. |
[31] |
HANEBUTH T, STATTEGGER K, GROOTES P M, 2000. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record[J]. Science, 288(5468): 1033-1035.
doi: 10.1126/science.288.5468.1033 |
[32] |
HEATON T J, KÖHLER P, BUTZIN M, et al, 2020. Marine20-the marine radiocarbon age calibration curve (0-55, 000 cal BP)[J]. Radiocarbon, 62(4): 779-820.
doi: 10.1017/RDC.2020.68 |
[33] |
HUANG YUN, XIAO JULE, XIANG RONG, et al, 2020. Holocene Indian Summer Monsoon variations inferred from end-member modeling of sediment grain size in the Andaman Sea[J]. Quaternary International, 558: 28-38.
doi: 10.1016/j.quaint.2020.08.032 |
[34] |
LI MINGKUN, OUYANG TINGPING, TIAN CHENGJING, et al, 2019. Sedimentary responses to the East Asian monsoon and sea level variations recorded in the northern South China Sea over the past 36 kyr[J]. Journal of Asian Earth Sciences, 171: 213-224.
doi: 10.1016/j.jseaes.2018.01.001 |
[35] |
LIU JIANGUO, STEINKE S, VOGT C, et al, 2017. Temporal and spatial patterns of sediment deposition in the northern South China Sea over the last 50,000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 465: 212-224.
doi: 10.1016/j.palaeo.2016.10.033 |
[36] |
LIU JIANGUO, HE WEI, CAO LI, et al, 2019. Staged fine-grained sediment supply from the Himalayas to the Bengal Fan in response to climate change over the past 50,000 years[J]. Quaternary Science Reviews, 212: 164-177.
doi: 10.1016/j.quascirev.2019.04.008 |
[37] |
LIU ZHIFEI, ZHAO YULONG, COLIN C, et al, 2016. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 153: 238-273.
doi: 10.1016/j.earscirev.2015.08.005 |
[38] | LÜDMANN T, WONG H K, BERGLAR K, 2005. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments[J]. Geophysical Research Letters, 32(5): L05614. |
[39] |
MCCAVE I N, MANIGHETTI B, ROBINSON S G, 1995. Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography[J]. Paleoceanography, 10(3): 593-610.
doi: 10.1029/94PA03039 |
[40] |
MIX A C, BARD E, SCHNEIDER R, 2001. Environmental processes of the ice age: land, oceans, glaciers (EPILOG)[J]. Quaternary Science Reviews, 20(4): 627-657.
doi: 10.1016/S0277-3791(00)00145-1 |
[41] | PASSEGA R, 1957. Texture as characteristic of clastic deposition[J]. AAPG Bulletin, 41(9): 1952-1984. |
[42] |
PASSEGA R, 1964. Grain size representation by CM patterns as a geologic tool[J]. Journal of Sedimentary Research, 34(4): 830-847.
doi: 10.1306/74D711A4-2B21-11D7-8648000102C1865D |
[43] |
PRINS M A, BOUWER L M, BEETS C J, et al, 2002. Ocean circulation and iceberg discharge in the glacial North Atlantic: inferences from unmixing of sediment size distributions[J]. Geology, 30(6): 555-558.
doi: 10.1130/0091-7613(2002)030<0555:OCAIDI>2.0.CO;2 |
[44] | QU TANGDONG, GIRTON J B, WHITEHEAD J A, 2006. Deepwater overflow through Luzon strait[J]. Journal of Geophysical Research, 111(C1): C01002. |
[45] |
SUN DONGHUAI, BLOEMENDAL J, REA D K, et al, 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 152(3-4): 263-277.
doi: 10.1016/S0037-0738(02)00082-9 |
[46] |
TIAN JIWEI, YANG QINGXUAN, ZHAO WEI, 2009. Enhanced diapycnal mixing in the South China Sea[J]. Journal of Physical Oceanography, 39(12): 3191-3203.
doi: 10.1175/2009JPO3899.1 |
[47] |
WAN SHIMING, LI ANCHUN, CLIFT P D, et al, 2007. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3-4): 561-582.
doi: 10.1016/j.palaeo.2007.07.009 |
[48] |
WAN SUI, JIAN ZHIMIN, GONG XUN, et al, 2020. Deep water [CO32-] and circulation in the south China sea over the last glacial cycle[J]. Quaternary Science Reviews, 243: 106499.
doi: 10.1016/j.quascirev.2020.106499 |
[49] |
WANG XIAOWEI, LIU ZHIYU, PENG SHIQIU, 2017. Impact of tidal mixing on water mass transformation and circulation in the South China Sea[J]. Journal of Physical Oceanography, 47(2): 419-432.
doi: 10.1175/JPO-D-16-0171.1 |
[50] |
WANG XINGXING, WANG YINGMIN, TAN MINGXUAN, et al, 2020. Deep-water deposition in response to sea-level fluctuations in the past 30 kyr on the northern margin of the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 163: 103317.
doi: 10.1016/j.dsr.2020.103317 |
[51] |
WU QIONG, COLIN C, LIU ZHIFEI, et al, 2015. Neodymium isotopic composition in foraminifera and authigenic phases of the South China Sea sediments: implications for the hydrology of the North Pacific Ocean over the past 25 kyr[J]. Geochemistry, Geophysics, Geosystems, 16(11): 3883-3904.
doi: 10.1002/2015GC005871 |
[52] |
YANG WENGUANG, ZHENG HONGBO, WANG KE, et al, 2008. Sedimentary characteristics of terrigenous debris at site MD05-2905 in the northeastern part of the South China Sea since 36 ka and evolution of the East Asian monsoon[J]. Frontiers of Earth Science in China, 2(2): 170.
doi: 10.1007/s11707-008-0035-8 |
[53] | ZHAI LINA, WAN SHIMING, COLIN C, et al, 2021. Deep-water formation in the North Pacific during the late Miocene global cooling[J]. Paleoceanography and Paleoclimatology, 36(2): e2020PA003946. |
[54] |
ZHANG YANWEI, TIAN JIWEI, 2014. Enhanced turbulent mixing induced by strong wind on the South China Sea shelf[J]. Ocean Dynamics, 64(6): 781-796.
doi: 10.1007/s10236-014-0710-0 |
[55] |
ZHAO SHAOHUA, LIU ZHIFEI, CHEN QUAN, et al, 2017. Spatiotemporal variations of deep-sea sediment components and their fluxes since the last glaciation in the northern South China Sea[J]. Science China Earth Sciences, 60(7): 1368-1381.
doi: 10.1007/s11430-016-9058-6 |
[56] |
ZHENG XUFENG, KAO SHUHJI, CHEN ZHONG, et al, 2016. Deepwater circulation variation in the South China Sea since the Last Glacial Maximum[J]. Geophysical Research Letters, 43(16): 8590-8599.
doi: 10.1002/grl.v43.16 |
[57] |
ZHONG YI, CHEN ZHONG, LI LIANG, et al, 2017. Bottom water hydrodynamic provinces and transport patterns of the northern South China Sea: evidence from grain size of the terrigenous sediments[J]. Continental Shelf Research, 140: 11-26.
doi: 10.1016/j.csr.2017.01.023 |
[58] |
ZHONG YI, LIU QINGSONG, CHEN ZHONG, et al, 2019. Tectonic and paleoceanographic conditions during the formation of ferromanganese nodules from the northern South China Sea based on the high-resolution geochemistry, mineralogy and isotopes[J]. Marine Geology, 410: 146-163.
doi: 10.1016/j.margeo.2018.12.006 |
[1] | 李杨, 黄鹏起, 鲁远征, 屈玲, 郭双喜, 岑显荣, 周生启, 张佳政, 丘学林. 基于精细温度观测的南海东北部陆坡-深海盆底层湍流混合*[J]. 热带海洋学报, 2022, 41(1): 62-74. |
[2] | 李博安, 胡善政, 阎贫, 于俊辉, 王潇, 唐群署. 南海东北部大陆坡地震反射异常体的属性分析与岩性识别*[J]. 热带海洋学报, 2022, 41(1): 204-214. |
[3] | 李开枝, 任玉正, 柯志新, 李刚, 谭烨辉. 南海东北部陆坡区中上层浮游动物的垂直分布*[J]. 热带海洋学报, 2021, 40(2): 61-73. |
[4] | 徐文龙, 王桂芬, 周雯, 许占堂, 曹文熙. 南海东北部夏季叶绿素a浓度垂向变化特征及其对水动力过程的响应*[J]. 热带海洋学报, 2018, 37(5): 62-73. |
[5] | 刘甲星, 周林滨, 李刚, 谭烨辉, 刘华健, 赵春宇, 柯志新, 李佳俊, 姜歆. 秋季南海东北部表层水体固氮及其对初级生产力贡献*[J]. 热带海洋学报, 2016, 35(5): 38-47. |
[6] | 丘学林, 赵明辉, 徐辉龙, 李家彪, 阮爱国, 郝天珧, 游庆瑜. 南海深地震探测的重要科学进程: 回顾和展望*[J]. 热带海洋学报, 2012, 31(3): 1-9. |
[7] | 周鹏,李冬梅,刘广山,门武,纪利红. 南海东北部和南部海域表层沉积物生物硅研究[J]. 热带海洋学报, 2010, 29(4): 40-47. |
[8] | 刘激,欧阳秀珍,周英,李团结. 珠江口底质元素含量分布特征及其地球化学意义[J]. 热带海洋学报, 2010, 29(1): 116-125. |
[9] | 赵俊峰,施小斌,丘学林,刘海龄. 南海东北部居里面特征及其石油地质意义[J]. 热带海洋学报, 2010, 29(1): 126-131. |
|