[1] |
李敏, 2013. 基于Thorpe尺度对南海深层混合的研究[D]. 青岛: 中国海洋大学.
|
|
LI MIN, 2013. Study of abyssal mixing in the South China Sea based on Thorpe Scale[D]. Qingdao: Ocean University of China. (in Chinese with English abstract)
|
[2] |
梁辉, 郑洁, 田纪伟, 2016. 南海西北陆坡区内潮与近惯性内波观测研究[J]. 海洋学报, 38(11): 32-42.
|
|
LIANG HUI, ZHENG JIE, TIAN JIWEI,2016. Observation of internal tides and near-inertial internal waves on the continental slope in the northwestern South China Sea[J]. Haiyang Xuebao, 38(11): 32-42. (in Chinese with English abstract)
|
[3] |
刘倩, 2016. 南海内潮的结构与变化[D]. 北京: 中国科学院大学.
|
|
LIU QIAN, 2016. Structure and variability of internal tides in the South China Sea[D]. Beijing: Chinese Academy of Sciences. (in Chinese with English abstract)
|
[4] |
尚晓东, 卢著敏, 谢晓辉, 等, 2010. 海洋湍流与海洋混合研究及其进展[C]// 第八届全国实验流体力学学术会议论文集. 广州: 中国力学学会: 1. (in Chinese)
|
[5] |
SHANMUGAM G, 2017. 等深流沉积: 物理海洋学、过程沉积学和石油地质学[J]. 石油勘探与开发, 44(2): 177-195.
|
|
SHANMUGAM G, 2017. Contourites: Physical oceanography, process sedimentology, and petroleum geology[J]. Petroleum Exploration and Development, 44(2): 177-195. (in Chinese with English abstract)
|
[6] |
谢皆烁, 2015. 水体层化及中尺度涡旋对南海北部内孤立波生成演化的影响[D]. 北京: 中国科学院大学.
|
|
XIE JIESHUO, 2015. Effects of the stratification and mesoscale eddy on the generation and evolution of internal solitary waves in the northern South China Sea[D]. Beijing: Chinese Academy of Sciences. (in Chinese with English abstract)
|
[7] |
张效谦, 2005. 南海北部陆架陆坡区内波与混合研究[D]. 青岛: 中国海洋大学.
|
|
ZHANG XIAOQIAN, 2005. Study of waves and mixing in the continental slope of northern South China Sea[D]. Qingdao: Ocean University of China. (in Chinese with English abstract)
|
[8] |
赵斌, 刘胜旋, 李丽青, 等, 2018. 南海冷泉分布特征及油气地质意义[J]. 海洋地质前沿, 34(10): 32-43.
|
|
ZHAO BIN, LIU SHENGXUAN, LI LIQING, et al, 2018. Distribution pattern of cold seeps in South China Sea and its geological significance[J]. Marine Geology Frontiers, 34(10): 32-43. (in Chinese with English abstract)
|
[9] |
赵玖强, 张艳伟, 刘志飞, 等, 2019. 南海北部深海潮汐的季节性变化特征[J]. 中国科学 D辑: 地球科学, 49(4): 717-730.
|
|
ZHAO JIUQIANG, ZHANG YANWEI, LIU ZHIFEI, et al, 2019. Seasonal variability of tides in the deep northern South China Sea[J]. Science in China Series D: Earth Sciences, 62(4): 671-683.
|
[10] |
BEAULIEU S, BALDWIN R, 1998. Temporal variability in currents and the benthic boundary layer at an abyssal station off central California[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 45(4-5): 587-615.
|
[11] |
CALLIES J, FERRARI R, 2018. Baroclinic instability in the presence of convection[J]. Journal of Physical Oceanography, 48(1): 45-60.
doi: 10.1175/JPO-D-17-0028.1
|
[12] |
CAO ANZHOU, GUO ZHENG, LV XIANQING, et al, 2017. Coherent and incoherent features, seasonal behaviors and spatial variations of internal tides in the northern South China Sea[J]. Journal of Marine Systems, 172: 75-83.
doi: 10.1016/j.jmarsys.2017.03.005
|
[13] |
CIMATORIBUS A A, VAN HAREN H, GOSTIAUX L, 2014. Comparison of Ellison and Thorpe scales from Eulerian ocean temperature observations[J]. Journal of Geophysical Research: Oceans, 119(10): 7047-7065.
doi: 10.1002/2014JC010132
|
[14] |
CRAWFORD W R, 1986. A comparison of length scales and decay times of turbulence in stably stratified flows[J]. Journal of Physical Oceanography, 16(11): 1847-1854.
doi: 10.1175/1520-0485(1986)016<1847:ACOLSA>2.0.CO;2
|
[15] |
DILLON T M, 1982. Vertical overturns: A comparison of Thorpe and Ozmidov length scales[J]. Journal of Geophysical Research: Oceans, 87(C12): 9601-9613.
|
[16] |
EGBERT G D, RAY R D, 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data[J]. Nature, 405(6788): 775-778.
doi: 10.1038/35015531
|
[17] |
ELLISON T H, 1957. Turbulent transport of heat and momentum from an infinite rough plane[J]. Journal of Fluid Mechanics, 2(5): 456-466.
doi: 10.1017/S0022112057000269
|
[18] |
FERRON B, MERCIER H, SPEER K, et al, 1998. Mixing in the Romanche fracture zone[J]. Journal of Physical Oceanography, 28(10): 1929-1945.
doi: 10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2
|
[19] |
GARGETT A E, 1989. Ocean turbulence[J]. Annual Review of Fluid Mechanics, 21(1): 419-451.
doi: 10.1146/fluid.1989.21.issue-1
|
[20] |
GREGG M C, 1987. Diapycnal mixing in the thermocline: A review[J]. Journal of Geophysical Research: Oceans, 92(C5): 5249-5286.
|
[21] |
HOLMES R M, DE LAVERGNE C, MCDOUGALL T J, 2019. Tracer transport within abyssal mixing layers[J]. Journal of Physical Oceanography, 49(10): 2669-2695.
doi: 10.1175/JPO-D-19-0006.1
|
[22] |
HOLTERMANN P L, UMLAUF L, 2012. The Baltic sea tracer release experiment: 2. Mixing processes[J]. Journal of Geophysical Research: Oceans, 117(C1): C01022.
|
[23] |
HUANG PENGQI, CEN XIANRONG, GUO SHUANGXI, et al, 2021. Variance of bottom water temperature at the continental margin of the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 126(2): e2020JC015843.
|
[24] |
ITSWEIRE E C, 1984. Measurements of vertical overturns in a stably stratified turbulent flow[J]. The Physics of Fluids, 27(4): 764.
doi: 10.1063/1.864704
|
[25] |
ITSWEIRE E C, KOSEFF J R, BRIGGS D A, et al, 1993. Turbulence in stratified shear flows: implications for interpreting shear-induced mixing in the ocean[J]. Journal of Physical Oceanography, 23(7): 1508-1522.
doi: 10.1175/1520-0485(1993)023<1508:TISSFI>2.0.CO;2
|
[26] |
JING ZHAO, WU LIXIN, LI LEI, et al, 2011. Turbulent diapycnal mixing in the subtropical northwestern Pacific: Spatial-seasonal variations and role of eddies[J]. Journal of Geophysical Research: Oceans, 116(C10): C10028.
|
[27] |
KUNZE E, MACKAY C, MCPHEE-SHAW E E, et al, 2012. Turbulent mixing and exchange with Interior waters on sloping boundaries[J]. Journal of Physical Oceanography, 42(6): 910-927.
doi: 10.1175/JPO-D-11-075.1
|
[28] |
LEDWELL J R, MONTGOMERY E T, POLZIN K L, et al, 2000. Evidence for enhanced mixing over rough topography in the abyssal ocean[J]. Nature, 403(6766): 179-182.
doi: 10.1038/35003164
|
[29] |
LI YING, XU YONGSHENG, 2014. Penetration depth of diapycnal mixing generated by wind stress and flow over topography in the northwestern Pacific[J]. Journal of Geophysical Research: Oceans, 119(8): 5501-5514.
doi: 10.1002/2013JC009681
|
[30] |
LOZOVATSKY I D, SHAPOVALOV S M, 2012. Thickness of the mixed bottom layer in the Northern Atlantic[J]. Oceanology, 52(4): 447-452.
doi: 10.1134/S0001437012010134
|
[31] |
MA B B, LIEN R C, KO D S, 2013. The variability of internal tides in the Northern South China Sea[J]. Journal of Oceanography, 69(5): 619-630.
doi: 10.1007/s10872-013-0198-0
|
[32] |
MUNK W, WUNSCH C, 1998. Abyssal recipes Ⅱ: energetics of tidal and wind mixing[J]. Deep Sea Research Part I: Oceanographic Research Papers, 45(12): 1977-2010.
doi: 10.1016/S0967-0637(98)00070-3
|
[33] |
NASH J D, ALFORD M H, KUNZE E, et al, 2007. Hotspots of deep ocean mixing on the Oregon continental slope[J]. Geophysical Research Letters, 34(1): L01605.
|
[34] |
OSBORN T R, 1980. Estimates of the local rate of vertical diffusion from dissipation measurements[J]. Journal of Physical Oceanography, 10(1): 83-89.
doi: 10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
|
[35] |
OZMIDOV R V, 1965. On the turbulent exchange in a stably stratified ocean[J]. Izvestiya, Atmospheric and Oceanic Physics, 1: 853-860.
|
[36] |
PETERS H, GREGG M C, SANFORD T B, 1995. Detail and scaling of turbulent overturns in the Pacific Equatorial Undercurrent[J]. Journal of Geophysical Research, 100(C9): 18349-18368.
|
[37] |
POLZIN K L, TOOLE J M, LEDWELL J R, et al, 1997. Spatial variability of turbulent mixing in the Abyssal Ocean[J]. Science, 276(5309): 93-96.
|
[38] |
RAHMSTORF S, 2003. Thermohaline circulation: The current climate[J]. Nature, 421(6924): 699.
doi: 10.1038/421699a
|
[39] |
SHANG XIAODONG, LIANG CHANGRONG, CHEN GUIYING, 2017. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea[J]. Ocean Science, 13(3): 503-519.
doi: 10.5194/os-13-503-2017
|
[40] |
SIMMONS H, CHANG M H, CHANG Y T, et al, 2011. Modeling and prediction of internal waves in the South China Sea[J]. Oceanography, 24(4): 88-99.
doi: 10.5670/oceanog
|
[41] |
STANSFIELD K, GARRETT C, DEWEY R, 2001. The Probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait[J]. Journal of Physical Oceanography, 31(12): 3421-3434.
doi: 10.1175/1520-0485(2001)031<3421:TPDOTT>2.0.CO;2
|
[42] |
THORPE S A, 1977. Turbulence and mixing in a Scottish Loch[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 286(1334): 125-181.
doi: 10.1098/rsta.1977.0112
|
[43] |
TIAN JIWEI, YANG QINGXUAN, ZHAO WEI, 2009. Enhanced diapycnal mixing in the South China Sea[J]. Journal of Physical Oceanography, 39(12): 3191-3203.
doi: 10.1175/2009JPO3899.1
|
[44] |
TOOLE J. M., SCHMITT R. W., Polzin K. L., 1997, Near-boundary mixing above the flanks of a mid-latitude seamount, Journal of Geophysical Research, 102: 947-959.
doi: 10.1029/96JC03160
|
[45] |
TSENG Y H, FERZIGER J H, 2001. Mixing and available potential energy in stratified flows[J]. Physics of Fluids, 13(5): 1281-1293.
doi: 10.1063/1.1358307
|
[46] |
TURNEWITSCH R, GRAF G, 2003. Variability of particulate seawater properties related to bottom mixed layer-associated internal waves in shallow water on a time scale of hours[J]. Limnology and Oceanography, 48(3): 1254-1264.
doi: 10.4319/lo.2003.48.3.1254
|
[47] |
VAN HAREN H, GOSTIAUX L, 2011. Large internal waves advection in very weakly stratified deep Mediterranean waters[J]. Geophysical Research Letters, 28(22): L22603.
|
[48] |
WANG XIAOWEI, PENG SHIQIU, LIU ZHIYU, et al, 2016. Tidal mixing in the South China Sea: An estimate based on the internal tide energetics[J]. Journal of Physical Oceanography, 46(1): 107-124.
doi: 10.1175/JPO-D-15-0082.1
|
[49] |
WATERHOUSE A F, MACKINNON J A, NASH J D, et al, 2014. Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate[J]. Journal of Physical Oceanography, 44(7): 1854-1872.
doi: 10.1175/JPO-D-13-0104.1
|
[50] |
XU ZHENHUA, YIN BAOSHU, HOU YIJUN, et al, 2013. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea[J]. Journal of Geophysical Research: Oceans, 118(1): 197-211.
doi: 10.1029/2012JC008212
|
[51] |
XU ZHENHUA, YIN BAOSHU, HOU YIJUN, et al, 2014. Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait[J]. Journal of Marine Systems, 134: 101-112.
doi: 10.1016/j.jmarsys.2014.03.002
|
[52] |
YANG QINGXUAN, TIAN JIWEI, ZHAO WEI, et al, 2014. Observations of turbulence on the shelf and slope of northern South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 87: 43-52.
doi: 10.1016/j.dsr.2014.02.006
|
[53] |
YANG QINGXUAN, ZHAO WEI, LIANG XINFENG, et al, 2016. Three-dimensional distribution of Turbulent Mixing in the South China Sea[J]. Journal of Physical Oceanography, 46(3): 769-788.
doi: 10.1175/JPO-D-14-0220.1
|
[54] |
ZHANG ZHIWEI, TIAN JIWEI, QIU BO, et al, 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea[J]. Scientific Reports, 6(1): 24349.
doi: 10.1038/srep24349
|
[55] |
ZHAO XIAOLONG, ZHOU CHUN, ZHAO WEI, et al, 2016. Deepwater overflow observed by three bottom-anchored moorings in the Bashi Channel[J]. Deep Sea Research Part I: Oceanographic Research Papers, 110: 65-74.
doi: 10.1016/j.dsr.2016.01.007
|
[56] |
ZHAO ZHONGXIANG, KLEMAS V, ZHENG QUANAN, et al, 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the Northeastern South China Sea[J]. Geophysical Research Letters, 31(6): L06302.
|