[1] |
胡晓婧, 刘俊杰, 魏丹, 等, 2018. 东北黑土区不同纬度农田土壤真菌分子生态网络比较[J]. 应用生态学报, 29(11): 3802-3810.
|
|
HU XIAOJING, LIU JUNJIE, WEI DAN, et al, 2018. Comparison on fungal molecular ecological networks of agricultural soils with different latitudes in the black soil region of Northeast China[J]. Chinese Journal of Applied Ecology, 29(11): 3802-3810 (in Chinese with English abstract).
|
[2] |
黄小平, 江志坚, 张景平, 等, 2018. 全球海草的中文命名[J]. 海洋学报, 40(4): 127-133.
|
|
HUANG XIAOPING, JIANG ZHIJIAN, ZHANG JINGPING, et al, 2018. The Chinese nomenclature of the global seagrasses[J]. Haiyang Xuebao, 40(4): 127-133 (in Chinese with English abstract).
|
[3] |
李伟, 2019. 海洋真菌分子生态学研究概况、问题与展望[J]. 菌物学报, 38(7): 1021-1032.
|
|
LI WEI, 2019. Current status, problems and future prospects of the studies on molecular ecology of marine fungi[J]. Mycosystema, 38(7): 1021-1032 (in Chinese with English abstract).
|
[4] |
凌娟, 董俊德, 张燕英, 等, 2010. 一株珊瑚礁-海草床复合生态系统固氮菌的分离与鉴定[J]. 微生物学通报, 37(7): 962-968.
|
|
LING JUAN, DONG JUNDE, ZHANG YANYING, et al, 2010. Isolation and characterization of a N2-fixing bacterium from coral reef-seagrass ecosystem[J]. Microbiology China, 37(7): 962-968 (in Chinese with English abstract).
|
[5] |
汪峰, ZHOU JIZHONG, 孙波, 2014. 我国东部土壤氮转化微生物的功能分子生态网络结构及其对作物的响应[J]. 科学通报, 59(4): 387-396.
|
|
WANG FENG, ZHOU JIZHONG, SUN BO, 2014. Structure of functional ecological networks of soil microbial communities for nitrogen transformations and their response to cropping in major soils in eastern China[J]. Chinese Science Bulletin, 59(4): 387-396 (in Chinese with English abstract).
|
[6] |
吴宪, 胡菏, 王蕊, 等, 2022. 化肥减量和有机替代对潮土微生物群落分子生态网络的影响[J]. 土壤学报, 59(2): 545-556.
|
|
WU XIAN, HU HE, WANG RUI, et al, 2022. Effects of reduction of chemical fertilizer and substitution coupled with organic manure on the molecular ecological network of microbial communities in Fluvo-aquic soil[J]. Acta Pedologica Sinica, 59(2): 545-556 (in Chinese with English abstract).
|
[7] |
顾美英, 张志东, 唐光木, 等, 2022. 黑果枸杞不同组织内生真菌群落组成及生态功能分析[J]. 菌物学报, 41:1254-1267.
|
|
GU MEIYING, ZHANG ZHIDONG, TANG GUANGMU, et al, 2022. Community composition and ecological function of endophytic fungi in different tissues of Lycium ruthenicum[J]. Acta Mycologica Sinica, 41: 1254-1267 (in Chinese with English abstract).
|
[8] |
ABARENKOV K, NILSSON R H, LARSSON K-H, et al, 2010. The UNITE database for molecular identification of fungi-recent updates and future perspectives[J]. The New Phytologist, 186(2): 281-285.
doi: 10.1111/nph.2010.186.issue-2
|
[9] |
AMEND A, BURGAUD G, CUNLIFFE M, et al, 2019. Fungi in the marine environment: Open questions and unsolved problems[J]. MBio, 10(2): e01189-e01118.
|
[10] |
BANERJEE S, SCHLAEPPI K, VAN DER HEIJDEN M G, 2018. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 16(9): 567-576.
doi: 10.1038/s41579-018-0024-1
pmid: 29789680
|
[11] |
BASS D, HOWE A, BROWN N, et al, 2007. Yeast forms dominate fungal diversity in the deep oceans[J]. Proceedings of the Royal Society B-Biological Sciences, 274(1629): 3069-3077.
doi: 10.1098/rspb.2007.1067
|
[12] |
BASTIAN M, HEYMANN S, JACOMY M, 2009. Gephi: an open source software for exploring and manipulating networks[C]. Proceedings of the international AAAI conference on web and social media, 3(1): 361-362.
|
[13] |
CAVICCHIOLI R, RIPPLE W J, TIMMIS K N, et al, 2019. Scientists’ warning to humanity: microorganisms and climate change[J]. Nature Reviews Microbiology, 17(9): 569-586.
doi: 10.1038/s41579-019-0222-5
|
[14] |
CONTE C, ROTINI A, MANFRA L, et al, 2021. The seagrass holobiont: what we know and what we still need to disclose for its possible use as an ecological indicator[J]. Water, 13(4): 406.
doi: 10.3390/w13040406
|
[15] |
DANG QIULING, WANG YAN, XIONG SHANGAO, et al, 2021. Untangling the response of fungal community structure, composition and function in soil aggregate fractions to food waste compost addition[J]. Science of The Total Environment, 769: 145248.
doi: 10.1016/j.scitotenv.2021.145248
|
[16] |
DENG YE, JIANG YI-HUEI, YANG YUNFENG, et al, 2012. Molecular ecological network analyses[J]. BMC bioinformatics, 13: 113.
doi: 10.1186/1471-2105-13-113
pmid: 22646978
|
[17] |
EDGCOMB V P, BEAUDOIN D, GAST R, et al, 2011. Marine subsurface eukaryotes: the fungal majority[J]. Environmental Microbiology, 13(1): 172-183.
doi: 10.1111/j.1462-2920.2010.02318.x
pmid: 21199255
|
[18] |
ETTINGER C L, EISEN J A, 2019. Characterization of the mycobiome of the Seagrass, Zostera marina, reveals putative associations with marine chytrids[J]. Frontiers in Microbiology, 10: 2476.
doi: 10.3389/fmicb.2019.02476
|
[19] |
ETTINGER C L, EISEN J A, 2020. Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina[J]. PloS one, 15(7): e0236135.
doi: 10.1371/journal.pone.0236135
|
[20] |
GAO ZHENG, JOHNSON Z I, WANG GUANGYI, 2010. Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters[J]. ISME Journal, 4(1): 111-120.
doi: 10.1038/ismej.2009.87
pmid: 19641535
|
[21] |
GARCÍA-GARCÍA N, TAMAMES J, LINZ A M, et al, 2019. Microdiversity ensures the maintenance of functional microbial communities under changing environmental conditions[J]. ISME Journal, 13(12): 2969-2983.
doi: 10.1038/s41396-019-0487-8
|
[22] |
HERNANDEZ D J, DAVID A S, MENGES E S, et al, 2021. Environmental stress destabilizes microbial networks[J]. ISME Journal, 15(6): 1722-1734.
doi: 10.1038/s41396-020-00882-x
pmid: 33452480
|
[23] |
IHRMARK K, BÖDEKER I T M, CRUZ-MARTINEZ K, et al, 2012. New primers to amplify the fungal ITS2 region-evaluation by 454-sequencing of artificial and natural communities[J]. FEMS Microbiology Ecology, 82(3): 666-677.
doi: 10.1111/j.1574-6941.2012.01437.x
|
[24] |
JONES E B G, PANG K-L, 2012. Tropical aquatic fungi[J]. Biodiversity and Conservation, 21(9): 2403-2423.
doi: 10.1007/s10531-011-0198-6
|
[25] |
LAMB J B, VAN DE WATER J A J M, BOURNE D G, et al, 2017. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates[J]. Science, 355(6326): 731-733.
doi: 10.1126/science.aal1956
pmid: 28209895
|
[26] |
LING JUAN, LIN XIANCHENG, ZHANG YANYING, et al, 2018. Community composition and transcriptional activity of ammonia-oxidizing prokaryotes of Seagrass Thalassia hemprichii in coral reef ecosystems[J]. Frontiers in Microbiology, 9: 7.
doi: 10.3389/fmicb.2018.00007
|
[27] |
LING JUAN, ZHANG YANYING, WU MEILIN, et al, 2015. Fungal community successions in rhizosphere sediment of seagrasses Enhalus acoroides under PAHs stress[J]. International Journal of Molecular Sciences, 16(6): 14039-14055.
doi: 10.3390/ijms160614039
|
[28] |
LIU SHENGEN, GARCÍA-PALACIOS P, TEDERSOO L, et al, 2022. Phylotype diversity within soil fungal functional groups drives ecosystem stability[J]. Nature Ecology and Evolution, 6(7): 900-909.
doi: 10.1038/s41559-022-01756-5
|
[29] |
LUCERO T C C, HERRERA-SILVEIRA J A, 2021. Seagrass contribution to blue carbon in a shallow karstic coastal area of the Gulf of Mexico[J]. PeerJ, 9: e12109.
doi: 10.7717/peerj.12109
|
[30] |
MA ANZHOU, ZHUANG XULIANG, WU JUNMEI, et al, 2013. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil[J]. Plos One, 8(6): e66146.
doi: 10.1371/journal.pone.0066146
|
[31] |
NAGAHAMA T, HAMAMOTO M, NAKASE T, et al, 2003. Rhodotorula benthica sp. nov. and Rhodotorula calyptogenae sp. nov., novel yeast species from animals collected from the deep-sea floor, and Rhodotorula lysiniphila sp. nov., which is related phylogenetically[J]. International Journal of Systematic and Evolutionary Microbiology, 53(Pt 3): 897-903.
doi: 10.1099/ijs.0.02395-0
|
[32] |
NGUYEN H M, RALPH P J, MARÍN-GUIRAO L, et al, 2021. Seagrasses in an era of ocean warming: a review[J]. Biological Reviews, 96(5): 2009-2030.
doi: 10.1111/brv.v96.5
|
[33] |
NGUYEN N H, SONG ZEWEI, BATES S T, et al, 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 20: 241-248.
doi: 10.1016/j.funeco.2015.06.006
|
[34] |
NILSSON R H, LARSSON K-H, TAYLOR A F S, et al, 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications[J]. Nucleic Acids Research, 47(D1): D259-D264.
doi: 10.1093/nar/gky1022
|
[35] |
OKSANEN J, BLANCHET F, FRIENDLY M, et al, 2021. Vegan: Community ecology package (Version 2. 5-7).2020[Z].
|
[36] |
ORTH R J, CARRUTHERS T J, DENNISON W C, et al, 2006. A global crisis for seagrass ecosystems[J]. Bioscience, 56(12): 987-996.
doi: 10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2
|
[37] |
PANNO L, BRUNO M, VOYRON S, et al, 2013. Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica[J]. New Biotechnology, 30: 685-694.
doi: 10.1016/j.nbt.2013.01.010
|
[38] |
QI QI, YUE HAOWEI, ZHANG ZHENHUA, et al, 2021. Microbial functional responses explain alpine soil carbon fluxes under future climate scenarios[J]. MBio, 12(1): e00761-e00720.
|
[39] |
RAGHUKUMAR S, 2017. Fungi in coastal and oceanic marine ecosystems[M]. Heidelberg: Springer.
|
[40] |
RÄMÄ T, NORDÉN J, DAVEY M L, et al, 2014. Fungi ahoy! Diversity on marine wooden substrata in the high North[J]. Fungal Ecology, 8: 46-58.
doi: 10.1016/j.funeco.2013.12.002
|
[41] |
RICHARDS T A, JONES M D M, LEONARD G, et al. 2012. Marine fungi: their ecology and molecular diversity[J]. Annual Review of Marine Science, 4: 495-522.
pmid: 22457985
|
[42] |
RIM S O, ROY M, JEON J, et al, 2021. Diversity and communities of fungal endophytes from four pinus species in Korea[J]. Forests, 12(3): 302.
doi: 10.3390/f12030302
|
[43] |
SANCHEZ-VIDAL A, CANALS M, DE HAAN W P, et al, 2021. Seagrasses provide a novel ecosystem service by trapping marine plastics[J]. Scientific reports, 11(1): 254.
doi: 10.1038/s41598-020-79370-3
|
[44] |
TANG YU-SHU, WANG LEI, JIA JIAN-WEI, et al, 2011. Response of soil microbial community in Jiuduansha wetland to different successional stages and its implications for soil microbial respiration and carbon turnover[J]. Soil Biology and Biochemistry, 43(3): 638-646.
doi: 10.1016/j.soilbio.2010.11.035
|
[45] |
TARQUINIO F, HYNDES G A, LAVEROCK B, et al, 2019. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning[J]. Fems Microbiology Letters, 366(6): fnz057.
doi: 10.1093/femsle/fnz057
|
[46] |
TASDEMIR D, 2017. Marine fungi in the spotlight: opportunities and challenges for marine fungal natural product discovery and biotechnology[J]. Fungal Biology and Biotechnology, 4(1): 1-4.
doi: 10.1186/s40694-016-0029-3
|
[47] |
TISTHAMMER K H, COBIAN G M, AMEND A S, 2016. Global biogeography of marine fungi is shaped by the environment[J]. Fungal Ecology, 19: 39-46.
doi: 10.1016/j.funeco.2015.09.003
|
[48] |
UGARELLI K, CHAKRABARTI S, LAAS P, et al, 2017. The Seagrass holobiont and its microbiome[J]. Microorganisms, 5(4): E81.
|
[49] |
VENKATACHALAM A, THIRUNAVUKKARASU N, SURYANARAYANAN T S, 2015. Distribution and diversity of endophytes in seagrasses[J]. Fungal Ecology, 13: 60-65.
doi: 10.1016/j.funeco.2014.07.003
|
[50] |
WAINWRIGHT B J, ZAHN G L, ARLYZA I S, et al, 2018. Seagrass-associated fungal communities follow Wallace’s line, but host genotype does not structure fungal community[J]. Journal of Biogeography, 45(4): 762-770.
doi: 10.1111/jbi.2018.45.issue-4
|
[51] |
WU LIYOU, WEN CHONGQING, QIN YUJIA, et al, 2015. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis[J]. BMC Microbiology, 15(1): 125.
doi: 10.1186/s12866-015-0450-4
|
[52] |
XIAO XI, HUANG YUZHOU, HOLMER M, 2020. Current trends in seagrass research in China (2010-2019)[J]. Aquatic Botany, 166: 103266.
doi: 10.1016/j.aquabot.2020.103266
|
[53] |
XIAO YUNZHU, HE MAOYU, XIE JIEFEN, et al, 2021. Effects of heavy metals and organic matter fractions on the fungal communities in mangrove sediments from Techeng Isle, South China[J]. Ecotoxicology and Environmental Safety, 222: 112545.
doi: 10.1016/j.ecoenv.2021.112545
|
[54] |
YELLE D J, RALPH J, LU FACHUANG, et al, 2008. Evidence for cleavage of lignin by a brown rot basidiomycete[J]. Environmental Microbiology, 10(7): 1844-1849.
doi: 10.1111/j.1462-2920.2008.01605.x
pmid: 18363712
|
[55] |
YUAN MENGTING M, GUO XUE, WU LINWEI, et al, 2021. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change, 11(4): 343-348.
doi: 10.1038/s41558-021-00989-9
|
[56] |
ZHANG GUANGLIANG, BAI JUNHONG, TEBBE C C, et al, 2021a. Spartina alterniflora invasions reduce soil fungal diversity and simplify co-occurrence networks in a salt marsh ecosystem[J]. Science of the Total Environment, 758: 143667.
doi: 10.1016/j.scitotenv.2020.143667
|
[57] |
ZHANG ZHI-FENG, PAN YUE-PING, LIU YUE, et al, 2021b. High-level diversity of basal fungal lineages and the control of fungal community assembly by stochastic processes in mangrove sediments[J]. Applied and Environmental Microbiology, 87(17): e0092821.
doi: 10.1128/AEM.00928-21
|
[58] |
ZHAO JIANSHU, GAO QUN, ZHOU JIZHONG, et al, 2019. The scale dependence of fungal community distribution in paddy soil driven by stochastic and deterministic processes[J]. Fungal Ecology, 42: 100856.
doi: 10.1016/j.funeco.2019.07.010
|
[59] |
ZHENG YONG, MAITRA P, GAN HUI-YUN, et al, 2021. Soil fungal diversity and community assembly: affected by island size or type?[J]. FEMS Microbiology Ecology, 97(5): fiab062.
doi: 10.1093/femsec/fiab062
|
[60] |
ZHOU JIZHONG, DENG YE, LUO FENG, et al, 2010. Functional molecular ecological networks[J]. mBio, 1(4): e00169-10.
|
[61] |
ZIMMERMAN R C, 2021. Scaling up: predicting the impacts of climate change on seagrass ecosystems[J]. Estuaries and Coasts, 44(2): 558-576.
doi: 10.1007/s12237-020-00837-7
|