[1] |
陈启明, 刘松林, 张弛, 等, 2020. 海南典型热带海草床4种代表性鱼类的生长特征及其对海草资源量变化的响应[J]. 热带海洋学报, 39(5): 62-70.
doi: 10.11978/2020007
|
|
CHEN QIMING, LIU SONGLIN, ZHANG CHI, et al, 2020. Growth characteristics of four representative fishes and their responses to seagrass resource changes in typical tropical seagrass beds of Hainan Island[J]. Journal of Tropical Oceanography, 39(5): 62-70. (in Chinese with English abstract)
doi: 10.11978/2020007
|
[2] |
黄小平, 江志坚, 张景平, 等, 2018. 全球海草的中文命名[J]. 海洋学报, 40(4): 127-133.
|
|
HUANG XIAOPING, JIANG ZHIJIAN, ZHANG JINGPING, et al, 2018. The Chinese nomenclature of the global seagrasses[J]. Haiyang Xuebao, 40(4): 127-133. (in Chinese with English abstract)
|
[3] |
李玲兰, 江志坚, 方扬, 等, 2020. 海草组学研究进展[J]. 科学通报, 65: 4063-4072.
|
|
Li LILAN, JIANG ZHIJIAN, Fang YANG, et al, 2020. Advances in seagrass’ omics research[J]. Chinese Science Bulletin, 65: 4063-4072. (in Chinese with English abstract)
|
[4] |
邱广龙, 苏治南, 范航清, 等, 2020. 贝克喜盐草的生物学和生态学特征及其保护对策[J]. 海洋环境科学, 39(1): 121-126.
|
|
QIU GUANGLONG, SU ZHINAN, FAN HANGQING, et al, 2020. Biological and ecological characteristics of intertidal seagrass Halophila beccarii and its conservation countermeasures[J]. Marine Environmental Sciences, 39(1): 121-126. (in Chinese with English abstract)
|
[5] |
邱广龙, 苏治南, 钟才荣, 等, 2016. 濒危海草贝克喜盐草在海南东寨港的分布及其群落基本特征[J]. 广西植物, 36(7): 882-889.
|
|
QIU GUANGLONG, SU ZHINAN, ZHONG CAIRONG, et al, 2016. Distribution and community characteristics of threatened seagrass Halophila beccarii in Dongzhai Harbor, Hainan[J]. Guihaia, 36(7): 882-889. (in Chinese with English abstract)
|
[6] |
舒展, 张晓素, 陈娟, 等, 2010. 叶绿素含量测定的简化[J]. 植物生理学通讯, 46(4): 399-402.
|
|
SHU ZHAN, ZHANG XIAOSU, CHEN JUAN, et al, 2010. The simplification of chlorophyll content measurement[J]. Plant Physiology Communications, 46(4): 399-402. (in Chinese with English abstract)
|
[7] |
王道儒, 吴钟解, 陈春华, 等, 2012. 海南岛海草资源分布现状及存在威胁[J]. 海洋环境科学, 31(1): 34-38.
|
|
WANG DAORU, WU ZHONGJIE, CHEN CHUNHUA, et al, 2012. Distribution of seagrass resources and existing threat in Hainan Island[J]. Marine Environmental Science, 31(1): 34-38.
|
[8] |
ALEXANDRE A, HILL P W, JONES D L, et al, 2015. Dissolved organic nitrogen: A relevant, complementary source of nitrogen for the seagrass Zostera marina[J]. Limnology and Oceanography, 60(5): 1477-1483.
doi: 10.1002/lno.10084
|
[9] |
ALEXANDRE A, SILVA J, SANTOS R, 2010. Inorganic nitrogen uptake and related enzymatic activity in the seagrass Zostera noltii[J]. Marine Ecology, 31(4): 539-545.
doi: 10.1111/mae.2010.31.issue-4
|
[10] |
ARTIKA S R, AMBO-RAPPE R, TEICHBERG M, et al, 2020. Morphological and physiological responses of Enhalus acoroides seedlings under varying temperature and nutrient treatment[J]. Frontiers in Marine Science, 7: 325.
doi: 10.3389/fmars.2020.00325
|
[11] |
BEER S, BJÖRK M, GADEMANN R, et al, 2001. Measurements of photosynthetic rates in seagrasses. In: Short R, Coles R. Global Seagrass Research Methods[M]. Amsterdam: Elsevier:183-198.
|
[12] |
BEER S, BJORK M, HELLBLOM F, et al, 2002. Inorganic carbon utilization in marine angiosperms (seagrasses)[J]. Functional Plant Biology, 29(3): 349-354.
doi: 10.1071/PP01185
pmid: 32689481
|
[13] |
BITTSÁNSZKY A, PILINSZKY K, GYULAI G, et al, 2015. Overcoming ammonium toxicity[J]. Plant Science, 231: 184-190.
doi: 10.1016/j.plantsci.2014.12.005
pmid: 25576003
|
[14] |
BUAPET P, 2017. Photobiology of Seagrasses:A Systems Biology Perspective. In: Kumar M, Ralph P. Systems Biology of Marine Ecosystems[M]. Switzerland: Springer:133-165.
|
[15] |
BURKHOLDER J M, TOMASKO D A, TOUCHETTE B W, 2007. Seagrasses and eutrophication[J]. Journal of Experimental Marine Biology and Ecology, 350(1-2): 46-72.
doi: 10.1016/j.jembe.2007.06.024
|
[16] |
CLARK M, 2011. Handbook of textile and industrial dyeing: Principles, Processes and Types of Dyes[M]. Amsterdam:Elsevier.
|
[17] |
CONNELL S D, FERNANDES M, BURNELL O W, et al, 2017. Testing for thresholds of ecosystem collapse in seagrass meadows[J]. Conservation Biology, 31(5): 1196-1201.
doi: 10.1111/cobi.12951
pmid: 28464290
|
[18] |
D'MELLO J P F, 2015. Amino acids in higher plants[M]. CABI.
|
[19] |
FOURQUREAN J W, DUARTE C M, KENNEDY H, et al, 2012. Seagrass ecosystems as a globally significant carbon stock[J]. Nature Geoscience, 5: 505-509.
doi: 10.1038/ngeo1477
|
[20] |
GAVIN N M, DURAKO M J, 2019. Carbon acquisition mechanisms in Halophila johnsonii and Thalassia testudinum[J]. Aquatic Botany, 152: 64-69.
doi: 10.1016/j.aquabot.2018.11.001
|
[21] |
HASLER-SHEETAL H, CASTORANI M C N, GLUD R N, et al, 2016. Metabolomics reveals cryptic interactive effects of species interactions and environmental stress on nitrogen and sulfur metabolism in seagrass[J]. Environmental Science & Technology, 50(21): 11602-11609.
doi: 10.1021/acs.est.6b04647
|
[22] |
HEMMINGA M, DUARTE C M, 2000. Seagrass Ecology[M]. Cambridge: Cambridge University Press.
|
[23] |
HEMMINGA M A, MATEO M A, 1996. Stable carbon isotopes in seagrasses: Variability in ratios and use in ecological studies[J]. Marine Ecology Progress Series, 140: 285-298.
doi: 10.3354/meps140285
|
[24] |
INVERS O, KRAEMER G P, PÉREZ M, et al, 2004. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica[J]. Journal of Experimental Marine Biology & Ecology, 303(1): 97-114.
|
[25] |
JIANG ZHIJIAN, CUI LIJUN, LIU SONGLIN, et al, 2020a. Historical changes in seagrass beds in a rapidly urbanizing area of guangdong province: Implications for conservation and management[J]. Global Ecology and Conservation, 22: e01035.
doi: 10.1016/j.gecco.2020.e01035
|
[26] |
JIANG ZHIJIAN, HUANG DAOJIAN, FANG YANG, et al, 2020b. Home for marine species: Seagrass leaves as vital spawning grounds and food source[J]. Frontiers in Marine Science, 7:194.
doi: 10.3389/fmars.2020.00194
|
[27] |
JIANG ZHIJIAN, LIU SONGLIN, ZHANG JINGPING, et al, 2017. Newly discovered seagrass beds and their potential for blue carbon in the coastal seas of Hainan Island, South China Sea[J]. Marine Pollution Bulletin, 125(1-2): 513-521.
doi: S0025-326X(17)30661-6
pmid: 28818604
|
[28] |
KUMAR M, RALPH P, 2017. Systems Biology of Marine Ecosystems[M]. Switzerland:Springer.
|
[29] |
LAMB J B, VAN DE WATER J A J M, BOURNE D G, et al, 2017. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates[J]. Science, 355(6326): 731-733.
doi: 10.1126/science.aal1956
pmid: 28209895
|
[30] |
LAPOINTE B E, HERREN L W, BREWTON R A, et al, 2020. Nutrient over-enrichment and light limitation of seagrass communities in the indian river lagoon, an urbanized subtropical estuary[J]. Science of the Total Environment, 699: 134068.
doi: 10.1016/j.scitotenv.2019.134068
|
[31] |
LARKUM A W, ORTH R J, DUARTE C M, 2006. Seagrasses:Biology, Ecology, and Conservation[M]. Berlin, Germany:Springer.
|
[32] |
LEE K-S, DUNTON K H, 1999. Inorganic nitrogen acquisition in the seagrass Thalassia testudinum: development of a whole-plant nitrogen budget[J]. Limnology and Oceanography, 44(5): 1204-1215.
doi: 10.4319/lo.1999.44.5.1204
|
[33] |
LEE K-S, PARK S R, KIM Y K, 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review[J]. Journal of Experimental Marine Biology and Ecology, 350(1-2): 144-175.
doi: 10.1016/j.jembe.2007.06.016
|
[34] |
LEONI V, PASQUALINI V, PERGENT-MARTINI C, et al, 2007. Physiological responses of posidonia oceanica to experimental nutrient enrichment of the canopy water[J]. Journal of Experimental Marine Biology and Ecology, 349(1): 73-83.
doi: 10.1016/j.jembe.2007.05.006
|
[35] |
LEONI V, VELA A, PASQUALINI V, et al, 2008. Effects of experimental reduction of light and nutrient enrichments (N and P) on seagrasses: A review[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(2): 202-220.
doi: 10.1002/(ISSN)1099-0755
|
[36] |
LI MOYANG, LUNDQUIST C J, PILDITCH C A, et al, 2019. Implications of nutrient enrichment for the conservation and management of seagrass Zostera muelleri meadows[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(9): 1484-1502.
doi: 10.1002/aqc.v29.9
|
[37] |
MCMILLAN C, PARKER P L, FRY B, 1980. 13C/12C ratios in seagrasses. Aquatic Botany, 9: 237-249.
doi: 10.1016/0304-3770(80)90025-X
|
[38] |
MISHRA A K, APTE D, 2021. The current status of Halophila beccarii: An ecologically significant, yet vulnerable seagrass of India[J]. Ocean & Coastal Management, 200: 105484.
|
[39] |
NAYAR S, LOO M, TANNER J, et al, 2018. Nitrogen acquisition and resource allocation strategies in temperate seagrass Zostera nigricaulis: Uptake, assimilation and translocation processes[J]. Scientific Reports, 8: 1-19.
|
[40] |
NGATIA L, GRACE III J M, MORIASI D, et al, 2019. Nitrogen and phosphorus eutrophication in marine ecosystems. In: FOUZIA H B, Monitoring of Marine Pollution[M]. IntechOpen, 1-17.
|
[41] |
OLSEN J L, ROUZÉ P, VERHELST B, et al, 2016. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea[J]. Nature, 530(7590): 331-335.
doi: 10.1038/nature16548
|
[42] |
PAZZAGLIA J, SANTILLÁN-SARMIENTO A, HELBER S B, et al, 2020. Does warming enhance the effects of eutrophication in the seagrass Posidonia oceanica?[J]. Frontiers in Marine Science, 7: 1067.
|
[43] |
PAZZAGLIA J, SANTILLÁN-SARMIENTO A, RUOCCO M, et al, 2022. Local environment modulates whole-transcriptome expression in the seagrass Posidonia oceanica under warming and nutrients excess[J]. Environmental Pollution, 303: 119077.
doi: 10.1016/j.envpol.2022.119077
|
[44] |
PERNICE M, SINUTOK S, SABLOK G, et al, 2016. Molecular physiology reveals ammonium uptake and related gene expression in the seagrass Zostera muelleri[J]. Marine Environmental Research, 122: 126-134.
doi: 10.1016/j.marenvres.2016.10.003
|
[45] |
PLATT T, GALLEGOS C, HARRISON W, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton[J]. Journal of Marine Research (USA), 38(4): 687-701.
|
[46] |
QIN LEZHEN, SUONAN ZHAXI, KIM S H, et al, 2021. Growth and reproductive responses of the seagrass Zostera marina to sediment nutrient enrichment[J]. ICES Journal of Marine Science, 78(3): 1160-1173.
doi: 10.1093/icesjms/fsab031
|
[47] |
RALPH P J, GADEMANN R, 2005. Rapid light curves: a powerful tool to assess photosynthetic activity[J]. Aquatic Botany, 82(3): 222-237.
doi: 10.1016/j.aquabot.2005.02.006
|
[48] |
RAVAGLIOLI C, CAPOCCHI A, FONTANINI D, et al, 2018. Macro-grazer herbivory regulates seagrass response to pulse and press nutrient loading[J]. Marine Environmental Research, 136: 54-61.
doi: S0141-1136(17)30531-7
pmid: 29519535
|
[49] |
SCHWARZ A M, BJÖRK M, BULUDA T, et al, 2000. Photosynthetic utilisation of carbon and light by two tropical seagrass species as measured in situ[J]. Marine Biology, 137: 755-761.
doi: 10.1007/s002270000433
|
[50] |
SHORT F, CARRUTHERS T, DENNISON W, et al, 2007. Global seagrass distribution and diversity: A bioregional model[J]. Journal of Experimental Marine Biology and Ecology, 350(1-2): 3-20.
doi: 10.1016/j.jembe.2007.06.012
|
[51] |
SHORT F T, COLES R G, WAYCOTT M, et al, 2010. Halophila beccarii. The IUCN red list of threatened species 2010: E. T173342a6995080.
|
[52] |
THOMSEN E, HERBECK L S, JENNERJAHN T C, 2020. The end of resilience: Surpassed nitrogen thresholds in coastal waters led to severe seagrass loss after decades of exposure to aquaculture effluents[J]. Marine Environmental Research, 160: 104986.
doi: 10.1016/j.marenvres.2020.104986
|
[53] |
THOMSEN E, HERBECK L, TEICHBERG M, et al, 2022. Species-specific phenotypic plasticity of two tropical seagrass species in response to in situ fertilisation under different trophic conditions[J]. Estuarine, Coastal and Shelf Science, 270: 107837.
doi: 10.1016/j.ecss.2022.107837
|
[54] |
TOUCHETTE B W, BURKHOLDER J M, 2000a. Overview of the physiological ecology of carbon metabolism in seagrasses[J]. Journal of Experimental Marine Biology and Ecology, 250(1-2): 169-205.
doi: 10.1016/S0022-0981(00)00196-9
|
[55] |
TOUCHETTE B W, BURKHOLDER J M, 2000b. Review of nitrogen and phosphorus metabolism in seagrasses[J]. Journal of Experimental Marine Biology and Ecology, 250(1-2): 133-167.
doi: 10.1016/S0022-0981(00)00195-7
|
[56] |
UNSWORTH R K F, MCKENZIE L J, COLLIER C J, et al, 2019. Global challenges for seagrass conservation[J]. Ambio, 48(8): 801-815.
doi: 10.1007/s13280-018-1115-y
|
[57] |
VAN KATWIJK M M, VERGEER L H T, SCHMITZ G H M, et al, 1997. Ammonium toxicity in eelgrass Zostera marina[J]. Marine Ecology Progress Series, 157: 159-173.
doi: 10.3354/meps157159
|
[58] |
VIANA I G, MOREIRA-SAPORITI A, TEICHBERG M, 2020. Species-specific trait responses of three tropical seagrasses to multiple stressors: the case of increasing temperature and nutrient enrichment[J]. Frontiers in Plant Science, 11: 571363.
doi: 10.3389/fpls.2020.571363
|
[59] |
WALTON M E M, AL-MASLAMANI I, HADDAWAY N, et al, 2016. Extreme 15N depletion in seagrasses[J]. Estuaries and Coasts, 39: 1709-1723.
doi: 10.1007/s12237-016-0103-3
|
[60] |
WANG HONGRUI, TANG XUEXI, CHEN JUN, et al, 2021. Comparative studies on the response of Zostera marina leaves and roots to ammonium stress and effects on nitrogen metabolism[J]. Aquatic Toxicology, 240: 105965.
doi: 10.1016/j.aquatox.2021.105965
|
[61] |
WAYCOTT M, DUARTE C M, CARRUTHERS T J, et al, 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proceedings of the National Academy of Sciences, 106(30): 12377-12381.
doi: 10.1073/pnas.0905620106
|