[1] |
郭亚娟, 周伟华, 袁翔城 , 等, 2018. 两种造礁石珊瑚对海水酸化和溶解有机碳加富的响应[J]. 热带海洋学报, 37(1):57-63.
|
|
GUO YAJUAN, ZHOU WEIHUA, YUAN XIANGCHENG , et al, 2018. Responses of two species of reef-building corals to acidification and dissolved organic carbon enrichment[J]. Journal of Tropical Oceanography, 37(1):57-63 (in Chinese with English abstract).
|
[2] |
林静, 汤汶, 万韬阮 , 2013. 基于结构光的3D激光扫描仪系统研究[J]. 微处理机, 34(2):78-80.
|
|
LIN JING, TANG WEN, WAN TAORUAN , 2013. Study to the low-cost 3D laser scanner based on structured light[J]. Microprocessors, 34(2):78-80 (in Chinese with English abstract).
|
[3] |
马敏, 王伯波, 闫超奇 , 等, 2018. 基于旋转电极的电容层析成像技术图像融合算法[J]. 计量学报, 39(1):43-46.
|
|
MA MIN, WANG BOBO, YAN CHAOQI , et al, 2018. Image fusion algorithm-based rotating electrodes for electrical capacitance tomography[J]. Acta Metrologica Sinica, 39(1):43-46 (in Chinese with English abstract).
|
[4] |
周洁 , 2012. 海洋酸化对海南三亚珊瑚共生虫黄藻密度和光合效率影响的实验研究[D]. 广州: 中国科学院南海海洋研究所: 1-82.
|
|
ZHOU JIE , 2012. Experimental study on the impact of ocean acidification on photosynthesis efficiency of symbiotic zooxanthellae of corals from Sanya Bay, China[D]. Guangzhou: South China Sea Institute of Oceanology, Chinese Academy of Sciences: 1-82 (in Chinese with English abstract).
|
[5] |
ANDERSON A E, JONAS E C, ODUM H T , 1958. Alteration of clay minerals by digestive processes of marine organisms[J]. Science, 127(3291):190-191.
doi: 10.1126/science.127.3291.190
pmid: 17738488
|
[6] |
ANDRÉFOUËT S, ROUX L, CHANCERELLE Y , et al, 2000. A fuzzy-possibilistic scheme of study for objects with indeterminate boundaries: application to French Polynesian reefscapes[J]. IEEE Transactions on Geoscience and Remote Sensing, 38(1):257-270.
doi: 10.1109/36.823918
|
[7] |
BYTHELL J, PAN P, LEE J , 2001. Three-dimensional morphometric measurements of reef corals using underwater photogrammetry techniques[J]. Coral Reefs, 20(3):193-199.
doi: 10.1007/s003380100157
|
[8] |
CAMP E F, NITSCHKE M R, RODOLFO-METALPA R , et al, 2017. Reef-building corals thrive within hot-acidified and deoxygenated waters[J]. Scientific Reports, 7(1):2434.
doi: 10.1038/s41598-017-02383-y
pmid: 28550297
|
[9] |
CESAR H, BURKE L, PET-SOEDE L , 2003. The economics of worldwide coral reef degradation[M]. Arnhem, Netherlands: Cesar Environmental Economics Consulting: 1-23.
|
[10] |
CHANCERELLE Y , 2000. Méthodes d’estimation des surfaces développées de coraux scléractiniaires à l’échelle d’une colonie ou d’un peuplement[J]. Oceanologica Acta, 23(2):211-219.
doi: 10.1016/S0399-1784(00)00125-0
|
[11] |
COCITO S, SGORBINI S, PEIRANO A , et al, 2003. 3-D reconstruction of biological objects using underwater video technique and image processing[J]. Journal of Experimental Marine Biology and Ecology, 297(1):57-70.
doi: 10.1016/S0022-0981(03)00369-1
|
[12] |
COURTNEY L A, FISHER W S, RAIMONDO S , et al, 2007. Estimating 3-dimensional colony surface area of field corals[J]. Journal of Experimental Marine Biology and Ecology, 351(1-2):234-242.
doi: 10.1016/j.jembe.2007.06.021
|
[13] |
DAHL A L , 1973. Surface area in ecological analysis: quantification of benthic coral-reef algae[J]. Marine Biology, 23(4):239-249.
doi: 10.1016/j.hal.2017.03.002
pmid: 28427567
|
[14] |
FERRARI R, FIGUEIRA W F, PRATCHETT M S , et al, 2017. 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons[J]. Scientific Reports, 7(1):16737.
doi: 10.1038/s41598-017-16408-z
pmid: 29196651
|
[15] |
FUKUNAGA A, BURNS J H R, CRAIG B K , et al, 2019. Integrating three-dimensional benthic habitat characterization techniques into ecological monitoring of coral reefs[J]. Journal of Marine Science and Engineering, 7(2):27.
doi: 10.3390/jmse7020027
|
[16] |
HOEGH-GULDBERG O , 1988. A method for determining the surface area of corals[J]. Coral Reefs, 7(3):113-116.
pmid: 12620018
|
[17] |
HOLMES G , 2008. Estimating three-dimensional surface areas on coral reefs[J]. Journal of Experimental Marine Biology and Ecology, 365(1):67-73.
doi: 10.1016/j.jembe.2008.07.045
|
[18] |
HOUSE J E, BRAMBILLA V, BIDAUT L M , et al, 2018. Moving to 3D: relationships between coral planar area, surface area and volume[J]. PeerJ, 6(2):e4280.
doi: 10.7717/peerj.4280
pmid: 29435392
|
[19] |
HUANG HUI, YUAN XIANGCHENG, CAI WEIJUN , et al, 2014. Positive and negative responses of coral calcification to elevated pCO2: case studies of two coral species and the implications of their responses[J]. Marine Ecology Progress Series, 502:145-156.
doi: 10.3354/meps10720
|
[20] |
KAANDORP J A, KÜBLER J E , 2001. The algorithmic beauty of seaweeds, sponges and corals[M]. Berlin, Germany: Springer:1-193.
|
[21] |
KAANDORP J A, SLOOT P M A, MERKS R M H , et al, 2005. Morphogenesis of the branching reef coral Madracis mirabilis[J]. Proceedings of the Royal Society B: Biological Sciences, 272(1559):127-133.
doi: 10.1098/rspb.2004.2934
pmid: 15695202
|
[22] |
KIKUZAWA Y P, TOH T C, NG C S L , et al, 2018. Quantifying growth in maricultured corals using photogrammetry[J]. Aquaculture Research, 49(6):2249-2255.
doi: 10.1111/are.2018.49.issue-6
|
[23] |
KRUSZYŃSKI K J, VAN LIERE R, KAANDORP J A, 2006. An interactive visualization system for quantifying coral structures [C]//Proceedings of the 8th joint Eurographics/IEEE VGTC conference on visualization. Lisbon, Portugal: Eurographics Association Aire-la-Ville:283-290.
|
[24] |
LESSER M P, MORROW K M, PANKEY S M , et al, 2018. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef[J]. The ISME Journal, 12(3):813-824.
doi: 10.1038/s41396-017-0008-6
pmid: 29222444
|
[25] |
MADIN J S, HOOGENBOOM M O, CONNOLLY S R , et al, 2016. A trait-based approach to advance coral reef science[J]. Trends in Ecology & Evolution, 31(6):419-428.
doi: 10.1371/journal.pone.0227437
pmid: 31910441
|
[26] |
MARSH J A JR , 1970. Primary productivity of reef-building calcareous red algae[J]. Ecology, 51(2):255-263.
doi: 10.2307/1933661
|
[27] |
MEYER J L, SCHULTZ E T , 1985. Tissue condition and growth rate of corals associated with schooling fish[J]. Limnology and Oceanography, 30(1):157-166.
doi: 10.4319/lo.1985.30.1.0157
|
[28] |
NAUMANN M S, NIGGL W, LAFORSCH C , et al, 2009. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography[J]. Coral Reefs, 28(1):109-117.
doi: 10.1007/s00338-008-0459-3
|
[29] |
ODUM H T, ODUM E P , 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok atoll[J]. Ecological Monographs, 25(3):291-320.
doi: 10.2307/1943285
|
[30] |
STIMSON J, KINZIE III R A , 1991. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions[J]. Journal of Experimental Marine Biology and Ecology, 153(1):63-74.
doi: 10.1016/S0022-0981(05)80006-1
|
[31] |
SZMANT-FROELICH A, REUTTER M, RIGGS L , 1985. Sexual reproduction of Favia fragum (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico[J]. Bulletin of Marine Science, 37(3):880-892.
|
[32] |
TUBIELLO F N, AMTHOR J S, BOOTE K J , et al, 2007. Crop response to elevated CO2 and world food supply: a comment on “Food for Thought…” by Long et al., Science 312:1918-1921, 2006[J]. European Journal of Agronomy, 26(3):215-223.
doi: 10.1016/j.eja.2006.10.002
|
[33] |
VOLLMER S V, EDMUNDS P J , 2000. Allometric scaling in small colonies of the scleractinian coral Siderastrea siderea (Ellis and Solander)[J]. Biological Bulletin, 199(1):21-28.
doi: 10.2307/1542703
pmid: 10975639
|
[34] |
VYTOPIL E, WILLIS B , 2001. Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier Reef: implications of coral morphology and habitat complexity[J]. Coral Reefs, 20(3):281-288.
doi: 10.1007/s003380100172
|
[35] |
WILDGRUBER D, RIECKER A, HERTRICH I , et al, 2005. Identification of emotional intonation evaluated by fMRI[J]. NeuroImage, 24(4):1233-1241.
doi: 10.1016/j.neuroimage.2004.10.034
pmid: 15670701
|