热带海洋学报 ›› 2024, Vol. 43 ›› Issue (2): 166-172.doi: 10.11978/2023062CSTR: 32234.14.2023062

所属专题: 海洋大数据及应用

• 海洋地质学 • 上一篇    下一篇

基于空间插值的不规则海洋地质样品测试分析数据聚类算法研究

邵长高1,2,3(), 严镔1,2(), 陈秋1,2,3   

  1. 1.广州海洋地质调查局三亚南海地质研究所, 海南 三亚 572025
    2.中国地质调查局南海地质科学院,海南 三亚 572025
    3.中国地质大学地理与信息工程学院, 湖北 武汉 430078
  • 收稿日期:2023-05-13 修回日期:2023-06-19 出版日期:2024-03-10 发布日期:2024-03-26
  • 作者简介:

    邵长高(1983—), 男, 博士, 正高级高工, 地质信息技术专业, 主要研究方向为海洋大数据分析、海洋遥感监测和海洋沉积地球化学等。email:

  • 基金资助:
    三亚崖州湾科技城管理局科技计划项目(SKJC-2022-01-001); 海域监测应用项目(2022R-SYS25-03)

Clustering algorithm of irregular marine geological sampling data based on spatial interpolation

SHAO Changgao1,2,3(), YAN Bin1,2(), CHEN Qiu1,2,3   

  1. 1. Sanya Institute of South China Sea Geology, Guangzhou Marine Geological Survey, Sanya 572025, China
    2. Academy of South China Sea Geological Science, China Geological Survey, Sanya 572025, China
    3. School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
  • Received:2023-05-13 Revised:2023-06-19 Online:2024-03-10 Published:2024-03-26
  • Supported by:
    Sanya Yazhou Bay Science and Technology City Administration 2022 Annual Science and Technology Plan Project Grant(SKJC-2022-01-001); Sea Area Monitoring Application Project(2022R-SYS25-03)

摘要:

海洋地质调查中获取大量海洋沉积物柱状样样品测试分析数据, 样品测试分析目的不同导致柱状样数据采样深度不同, 由此造成地质取样数据在三维空间上呈现不规则散点状分布。传统聚类算法无法在三维空间上对此类不规则散点数据进行聚类分析。对此, 文章设计了一种基于空间插值的不规则地质样品测试分析数据聚类算法, 有效地将三维样品测试分析散点数据降为二维数据后进行聚类分析, 本算法较好地解决了地质体中试验测试数据的不均衡性问题, 为海洋地质大数据分析提供了基础技术方法。

关键词: 地质取样, 实验测试, 聚类算法, 空间插值, 三维

Abstract:

A large number of core sampling data were obtained from marine geological survey. Different kinds of measurement data have different sampling depths, resulting in irregularly scattered distribution of 3D geological sampling. The irregularly scattered data on the three dimensional were not able being clustered using traditional clustering algorithm especially in the case of big data analysis. The present study designs a clustering algorithm for irregular geological sampling data based on spatial interpolation. In this way, the 3D geological scatter data can be effectively reduced to 2D data, and the computational complexity can be reduced. This algorithm can better solve the classification and analysis of inequality measurement data in geological bodies, and provides a basic technical method for marine geological big data analysis.

Key words: marine geological survey, core sampling data, cluster analysis, spatial interpolation, 3-D data