[1] |
白美娜, 江涛, 陈飞羽, 等, 2019. 大亚湾大鹏澳牡蛎养殖临近海域自养微微型浮游生物种群分布特征[J]. 海洋与湖沼, 50(1): 129-138.
|
|
BAI MEINA, JIANG TAO, CHEN FEIYU, et al, 2019. The temporal and spatial distribution of aototrophic picoplankton and community in the oyster culture area and its adjacent waters of Dapeng Cove, Guangdong, China[J]. Oceanologia et Limnologia Sinica, 50(1): 129-138 (in Chinese with English abstract).
|
[2] |
蔡立哲, 2003. 大型底栖动物污染指数(MPI)[J]. 环境科学学报, 23(5): 625-629.
|
|
CAI LIZHE, 2003. Macrozoobenthos pollution index (MPI)[J]. Acta Scientiae Circumstantiae, 23(5): 625-629 (in Chinese with English abstract).
|
[3] |
邓邦平, 杨宇峰, 2011. 大鹏澳养殖海域表底层水环境及浮游动物群落结构的比较研究[J]. 海洋环境科学, 30(4): 492-495.
|
|
DENG BANGPING, YANG YUFENG, 2011. Water environment and zooplankton community structures in surface and bottom layer seawater in mari-culture area in Dapeng Cove coastal water[J]. Marine Environmental Science, 30(4): 492-495 (in Chinese with English abstract).
|
[4] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2007a. GB/T12963-2007海洋调查规范[S]. 北京: 中国标准出版社 (in Chinese).
|
[5] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2007b. GB/T17378-2007海洋监测规范[S]. 北京: 中国标准出版社 (in Chinese).
|
[6] |
齐占会, 王珺, 黄洪辉, 等, 2012. 广东省海水养殖贝藻类碳汇潜力评估[J]. 南方水产科学, 8(1): 30-35.
|
|
QI ZHANHUI, WANG JUN, HUANG HONGHUI, et al, 2012. Potential assessment of carbon sink capacity by marine bivalves and seaweeds in Guangdong Province[J]. South China Fisheries Science, 8(1): 30-35 (in Chinese with English abstract).
|
[7] |
于宗赫, 江涛, 夏建军, 等, 2014. 大鹏澳牡蛎养殖区生态服务价值评估[J]. 水产学报, 38(6): 853-860.
|
|
YU ZONGHE, JIANG TAO, XIA JIANJUN, et al, 2014. Ecosystem service value assessment for an oyster farm in Dapeng Cove[J]. Journal of Fisheries of China, 38(6): 853-860 (in Chinese with English abstract).
|
[8] |
张玲, 李政菊, 陈飞羽, 等, 2015. 大鹏澳牡蛎养殖对浮游植物种群结构的影响研究[J]. 海洋与湖沼, 46(3): 549-555.
|
|
ZHANG LING, LI ZHENGJU, CHEN FEIYU, et al, 2015. Impact of oyster aquaculture on phytoplankton population structure in Dapeng Cove[J]. Oceanologia et Limnologia Sinica, 46(3): 549-555 (in Chinese with English abstract).
|
[9] |
朱骅, 2019. 从碳汇渔业到蓝色粮仓的发展机制[J]. 上海海洋大学学报, 28(6): 968-975.
|
|
ZHU HUA, 2019. Mechanism of advancement from carbon sink fisheries to blue granary[J]. Journal of Shanghai Ocean University, 28(6): 968-975 (in Chinese with English abstract).
|
[10] |
ANGONESI L G, BEMVENUTI C E, GANDRA M S, 2006. Effects of dredged sediment disposal on the coastal marine macrobenthic assemblage in Southern Brazil[J]. Brazilian Journal of Biology, 66(2A): 413-420.
pmid: 16862294
|
[11] |
BOLAM S G, COGGAN R C, EGGLETON J, et al, 2014. Sensitivity of macrobenthic secondary production to trawling in the English sector of the Greater North Sea: a biological trait approach[J]. Journal of Sea Research, 85: 162-177.
|
[12] |
BONAGLIA S, BRÜCHERT V, CALLAC N, et al, 2017. Methane fluxes from coastal sediments are enhanced by macrofauna[J]. Scientific Reports, 7(1): 13145.
doi: 10.1038/s41598-017-13263-w
pmid: 29030563
|
[13] |
BREMNER J, 2008. Species’ traits and ecological functioning in marine conservation and management[J]. Journal of Experimental Marine Biology and Ecology, 366(1-2): 37-47.
|
[14] |
CAO YANJIE, SHI RONGJUN, HAN TINGTING, et al, 2023. Shell accumulation on seabed due to suspended coastal oyster farming and effects on burrowing capacity of the polychaete Perinereis aibuhitensis[J]. Frontiers in Marine Science, 10: 1219184.
|
[15] |
CHEVENE F, DOLÉADEC S, CHESSEL D, 1994. A fuzzy coding approach for the analysis of long-term ecological data[J]. Freshwater Biology, 31(3): 295-309.
|
[16] |
DAUVIN J C, 2018. Twenty years of application of Polychaete/Amphipod ratios to assess diverse human pressures in estuarine and coastal marine environments: a review[J]. Ecological Indicators, 95: 427-435.
|
[17] |
DENOYELLE M, JORISSEN F J, MARTIN D, et al, 2010. Comparison of benthic foraminifera and macrofaunal indicators of the impact of oil-based drill mud disposal[J]. Marine Pollution Bulletin, 60(11): 2007-2021.
doi: 10.1016/j.marpolbul.2010.07.024
pmid: 20825954
|
[18] |
DONÁZAR-ARAMENDÍA I, SÁNCHEZ-MOYANO J E, GARCÍA-ASENCIO I, et al, 2018. Impact of dredged-material disposal on soft-bottom communities in a recurrent marine dumping area near to Guadalquivir estuary, Spain[J]. Marine Environmental Research, 139: 64-78.
|
[19] |
DRAY S, CHOLER P, DOLÉDEC S, et al, 2014. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation[J]. Ecology, 95(1): 14-21.
pmid: 24649641
|
[20] |
DUBALL C E, AMADOR J A, SALISBURY L E, et al, 2019. Impacts of oyster aquaculture on subaqueous soils and infauna[J]. Journal of Environmental Quality, 48(6): 1890-1898.
doi: 10.2134/jeq2019.03.0099
|
[21] |
ELITH J, LEATHWICK J R, 2009. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 40: 677-697.
|
[22] |
ERLER D V, WELSH D T, BENNET W W, et al, 2017. The impact of suspended oyster farming on nitrogen cycling and nitrous oxide production in a sub-tropical Australian estuary[J]. Estuarine, Coastal and Shelf Science, 192: 117-127.
|
[23] |
FORREST B M, KEELEY N B, HOPKINS G A, et al, 2009. Bivalve aquaculture in estuaries: review and synthesis of oyster cultivation effects[J]. Aquaculture, 298(1-2): 1-15.
|
[24] |
GAGIC V, BARTOMEUS I, JONSSON T, et al, 2015. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices[J]. Proceedings of the Royal Society B: Biological Sciences, 282(1801): 20142620.
|
[25] |
GARLOCK T, ASCHE F, ANDERSON J, et al, 2020. A global blue revolution: aquaculture growth across regions, species, and countries[J]. Reviews in Fisheries Science & Aquaculture, 28(1): 107-116.
|
[26] |
GARNIER E, CORTEZ J, BILLÈS G, et al, 2004. Plant functional markers capture ecosystem properties during secondary succession[J]. Ecology, 85(9): 2630-2637.
|
[27] |
HUSTON M, 1979. A general hypothesis of species diversity[J]. The American Naturalist, 113(1): 81-101.
|
[28] |
JARAMILLO E, BERTRÁN C, BRAVO A, 1992. Mussel biodeposition in an estuary in southern Chile[J]. Marine Ecology Progress Series, 82(1): 85-94.
|
[29] |
JELIAZKOV A, MIJATOVIC D, CHANTEPIE S, et al, 2020. A global database for metacommunity ecology, integrating species, traits, environment and space[J]. Scientific Data, 7(1): 6.
doi: 10.1038/s41597-019-0344-7
pmid: 31913312
|
[30] |
JUMARS P A, DORGAN K M, LINDSAY S M, 2015. Diet of worms emended: an update of polychaete feeding guilds[J]. Annual Review of Marine Science, 7: 497-520.
doi: 10.1146/annurev-marine-010814-020007
pmid: 25251269
|
[31] |
LIAO YIBO, SHOU LU, JIANG ZHIBING, et al, 2019. Effects of fish cage culture and suspended oyster culture on macrobenthic communities in Xiangshan Bay, a semi-enclosed subtropical bay in eastern China[J]. Marine Pollution Bulletin, 142: 475-483.
doi: S0025-326X(19)30250-4
pmid: 31232327
|
[32] |
LUNSTRUM A, MCGLATHERY K, SMYTH A, 2018. Oyster (Crassostrea virginica) aquaculture shifts sediment nitrogen processes toward mineralization over denitrification[J]. Estuaries and Coasts, 41(4): 1130-1146.
|
[33] |
MAO YUZE, LIN FAN, FANG JIANGUANG, et al, 2019. Bivalve production in China[M]// SMAAL A C, FERREIRA J G, GRANT J, et al. Goods and services of marine bivalves. Cham: Springer: 51-72.
|
[34] |
MASON N W H, MOUILLOT D, LEE W G, et al, 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity[J]. Oikos, 111(1): 112-118.
|
[35] |
MCGILL B J, ENQUIST B J, WEIHER E, et al, 2006. Rebuilding community ecology from functional traits[J]. Trends in Ecology & Evolution, 21(4): 178-185.
|
[36] |
MOUILLOT D, GRAHAM N A J, VILLÉGER S, et al, 2013. A functional approach reveals community responses to disturbances[J]. Trends in Ecology & Evolution, 28(3): 167-177.
|
[37] |
PATRÍCIO J, NETO J M, TEIXEIRA H, et al, 2009. The robustness of ecological indicators to detect long-term changes in the macrobenthos of estuarine systems[J]. Marine Environmental Research, 68(1): 25-36.
doi: 10.1016/j.marenvres.2009.04.001
pmid: 19409610
|
[38] |
QI ZHANHUI, SHI RONGJUN, YU ZONGHE, et al, 2019. Nutrient release from fish cage aquaculture and mitigation strategies in Daya Bay, southern China[J]. Marine Pollution Bulletin, 146: 399-407.
doi: S0025-326X(19)30526-0
pmid: 31426174
|
[39] |
QUEIRÓS A M, BIRCHENOUGH S N R, BREMNER J, et al, 2013. A bioturbation classification of European marine infaunal invertebrates[J]. Ecology and Evolution, 3(11): 3958-3985.
doi: 10.1002/ece3.769
pmid: 24198953
|
[40] |
RAY N E, MAGUIRE T J, AL-HAJ A N, et al, 2019. Low greenhouse gas emissions from oyster aquaculture[J]. Environmental Science & Technology, 53(15): 9118-9127.
|
[41] |
REISS H, KRÖNCKE I, 2005. Seasonal variability of benthic indices: an approach to test the applicability of different indices for ecosystem quality assessment[J]. Marine Pollution Bulletin, 50(12): 1490-1499.
pmid: 16038944
|
[42] |
RICOTTA C, MORETTI M, 2011. CWM and Rao’s quadratic diversity: a unified framework for functional ecology[J]. Oecologia, 167(1): 181-188.
|
[43] |
SCHMERA D, HEINO J, PODANI J, et al, 2017. Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research[J]. Hydrobiologia, 787(1): 27-44.
|
[44] |
SOLOMON O O, AHMED O O, 2016. Ecological consequences of oysters culture: a review[J]. International Journal of Fisheries and Aquatic Studies, 4(3): 1-6.
|
[45] |
TILMAN D, KNOPS J, WEDIN D, et al, 1997. The influence of functional diversity and composition on ecosystem processes[J]. Science, 277(5330): 1300-1302.
|
[46] |
VANDEWALLE M, DE BELLO F, BERG M P, et al, 2010. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms[J]. Biodiversity and Conservation, 19(10): 2921-2947.
|
[47] |
VIJI C S, CHADHA N K, KRIPA V, et al, 2014. Can oysters control eutrophication in an integrated fish-oyster aquaculture system?[J]. Journal of the Marine Biological Association of India, 56(2): 67-73.
|
[48] |
VILLÉGER S, MASON N W H, MOUILLOT D, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology[J]. Ecology, 89(8): 2290-2301.
doi: 10.1890/07-1206.1
pmid: 18724739
|