热带海洋学报 ›› 2025, Vol. 44 ›› Issue (3): 24-35.doi: 10.11978/2024176CSTR: 32234.14.2024176

• 海洋水文学 • 上一篇    下一篇

基于CNN-LSTM的高频地波雷达海流方向校正方法

许毅1(), 韦骏1(), 魏春雷2, 杨凡2   

  1. 1.中山大学大气科学学院, 南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
    2.国家海洋局珠海海洋环境监测中心站, 广东 珠海 519015
  • 收稿日期:2024-09-12 修回日期:2024-10-29 出版日期:2025-05-10 发布日期:2025-06-04
  • 通讯作者: 韦骏
  • 作者简介:

    许毅(1997—), 男, 湖南省邵东市人, 硕士研究生, 从事高频地波雷达的研究。email:

  • 基金资助:
    南方海洋科学与工程广东省实验室(珠海)自主科研项目(SML2020SP009)

An ocean current direction correction method for high-frequency surface wave radars based on CNN-LSTM

XU Yi1(), WEI Jun1(), WEI Chunlei2, YANG Fan2   

  1. 1. School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
    2. Zhuhai Marine Environmental Monitoring Central Station of the State Oceanic Administration, Zhuhai 519015, China
  • Received:2024-09-12 Revised:2024-10-29 Online:2025-05-10 Published:2025-06-04
  • Contact: WEI Jun
  • Supported by:
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)(SML2020SP009)

摘要:

高频地波雷达对近岸区域进行探测时, 雷达电磁波往往容易受到海岸线以及岛屿等地形因素的干扰, 从而导致雷达探测数据合成的海流方向出现较大的误差, 而传统的高频地波雷达反演算法并未将物理因素的影响纳入其中。为了解决这个问题, 结合卷积神经网(convolutional neural networks, CNN)和长短期记忆(long short-term memory, LSTM)神经网络的特点, 本文提出了一种基于CNN-LSTM的组合模型, 将海面风、潮汐以及海拔数据输入到模型中, 对雷达探测数据合成的海流方向进行校正。实验结果表明, CNN-LSTM模型结合物理海洋因子后能够有效提高受地形影响区域的雷达探测海流数据质量, 使合成的海流方向准确性显著提升。经过模型校正后, 相较原始雷达数据, 经验正交函数椭圆的方向角误差由77.10°降为23.06°, 椭圆的长短轴误差由0.0896降为0.0538, 海流的平均流方向角误差由20.82°降为6.21°。

关键词: 高频地波雷达, 海流方向, 卷积神经网络, 长短期记忆神经网络

Abstract:

High-frequency surface wave radars often encounter interference from coastal topography and islands when detecting nearshore areas, leading to significant errors in the synthesized ocean current directions from radar data. Traditional high-frequency surface wave radar inversion algorithms do not account for the impact of these physical factors. To address this issue, leveraging the strengths of convolutional neural networks (CNN) and long short-term memory (LSTM) neural networks, this paper introduces a hybrid CNN-LSTM model. This model incorporates data on sea surface wind, tide, and elevation, allowing for the refinement of ocean current directions obtained from radar measurements. The experimental results show that the CNN-LSTM model, when combined with physical oceanographic factors, can effectively improve the quality of radar-detected ocean current data in areas affected by topography, significantly enhancing the accuracy of the synthesized ocean current direction. After model correction, compared to the original radar data, the directional angle error of the empirical orthogonal function ellipse decreased from 77.10° to 23.06°, the error of the ellipse’s major and minor axes decreased from 0.0896 to 0.0538, and the average flow directional angle error of the ocean currents decreased from 20.82° to 6.21°.

Key words: high-frequency surface wave radar, ocean current direction, convolutional neural network, long short-term memory neural network

中图分类号: 

  • P714