热带海洋学报 ›› 2025, Vol. 44 ›› Issue (4): 14-24.doi: 10.11978/2024228

• 海洋地质学 • 上一篇    下一篇

基于机器学习的海上风电场浅部地层CPT参数预测方法

李书兆1(), 魏澈1, 申辰1, 孙国栋1, 杨叶涛2(), 罗进华3, 王教龙3   

  1. 1.中海石油(中国)有限公司北京研究中心, 北京 100028
    2.中国地质大学(武汉)地球物理与空间信息学院, 湖北 武汉 430074
    3.中海油田服务股份有限公司, 天津 300459
  • 收稿日期:2024-12-04 修回日期:2025-01-02 出版日期:2025-07-10 发布日期:2025-07-31
  • 通讯作者: 杨叶涛
  • 作者简介:

    李书兆(1985—), 女, 河北省邢台市人, 博士, 高级工程师, 从事海洋岩土工程研究与应用。email:

  • 基金资助:
    国家“十四五”重大科技项目(KJZX-2022-12-XNY-0100)

A machine learning-based method for predicting shallow subsurface CPT parameters in offshore wind farms

LI Shuzhao1(), WEI Che1, SHEN Chen1, SUN Guodong1, YANG Yetao2(), LUO Jinhua3, WANG Jiaolong3   

  1. 1. CNOOC Research Institute Ltd., Beijing 100028, China
    2. Institute of Geophysics & Geomatics, China University of Geosciences (Wuhan), Wuhan 430074, China
    3. China Oilfield Services Limited, Tianjin 300459, China
  • Received:2024-12-04 Revised:2025-01-02 Online:2025-07-10 Published:2025-07-31
  • Contact: YANG Yetao
  • Supported by:
    China "14th Five-Year Plan" Major Science and Technology Project(KJZX-2022-12-XNY-0100)

摘要: 海上风电平台的建设, 迫切需要利用海底的地质工程资料, 提高地质参数预测的计算效率和准确率。静力触探试验(cone penetration testing, CPT)数据具有独特优势, 在海上风电场地质参数建模中具有重要作用。传统的CPT参数预测主要采用贝叶斯、克里金插值等方法。本研究将支持向量回归、随机森林和神经网络算法引入地质参数预测领域, 融合二维地震数据的空间连续性优势和静力触探数据的垂向分辨率优势, 对南海莺歌海盆地的东方海上风电场浅部地层进行CPT参数预测与建模。利用误差直方图和验证散点图对3种方法的准确率进行比较, 结果表明, 神经网络预测结果综合性能较为优秀, 支持向量回归模型预测结果较为简单。由于随机森林方法具有截断性, 预测结果最差, 在水平方向出现了突变。本研究可以为海底地质岩土参数预测提供一种新的研究思路。

关键词: 静力触探试验, 参数预测, 随机森林, 支持向量回归, 神经网络

Abstract:

The construction of offshore wind power platforms urgently requires seabed geotechnical data to enhance the efficiency and accuracy of geological parameter prediction and modeling. Cone Penetration Testing (CPT) data offers unique advantages and plays a crucial role in geological parameter modeling for offshore wind farms. Traditional CPT-based prediction methods mainly utilize techniques such as Bayesian and Kriging interpolation. This study introduces Support Vector Regression (SVR), Random Forest (RF), and Neural Network (NN) algorithms into geological parameter prediction, combining the spatial continuity advantage of 2D seismic data with the vertical resolution advantage of CPT data to predict and model the CPT geotechnical parameters in shallow strata at the Eastern Offshore Wind Farm site in the Yinggehai Basin, South China Sea. The accuracy of the three methods is evaluated using error histograms and validation scatter plots. Results indicate that the Neural Network delivers the best overall performance, while the Support Vector Regression model yields simpler predictions. Due to the truncation nature of the Random Forest method, it yields the least accurate results, exhibiting abrupt horizontal variations. This study presents a novel research approach for predicting seabed geotechnical parameters.

Key words: CPT, parameter prediction, Random Forest, Support Vector Regression, Neural Networks

中图分类号: 

  • P714+.6