| [1] | 高亚辉, 虞秋波, 齐雨藻, 等, 2003. 长江口附近海域春季浮游硅藻的种类组成和生态分布[J]. 应用生态学报, 14(7): 1044-1048. | 
																													
																						|  | GAO YAHUI, YU QIUBO, QI YUZAO, et al, 2003. Species composition and ecological distribution of planktonic diatoms in the Changjiang River estuary during spring[J]. Chinese Journal of Applied Ecology, 14(7): 1044-1048 (in Chinese with English abstract). | 
																													
																						| [2] | 孙军, 李晓倩, 陈建芳, 等, 2016. 海洋生物泵研究进展[J]. 海洋学报, 38(4): 1-21. | 
																													
																						|  | SUN JUN, LI XIAOQIAN, CHEN JIANFANG, et al, 2016. Progress in oceanic biological pump[J]. Haiyang Xuebao, 38(4): 1-21 (in Chinese with English abstract). | 
																													
																						| [3] | 魏静, 林莉, 潘雄, 等, 2020. 不同环境胁迫因子对藻类分子生物学特性的影响研究进展[J]. 长江科学院院报, 37(4): 14-24.  doi: 10.11988/ckyyb.20190062
 | 
																													
																						|  | WEI JING, LIN LI, PAN XIONG, et al, 2020. Research progress about the effects of different environmental stress factors on algae in molecular biology[J]. Journal of Yangtze River Scientific Research Institute, 37(4): 14-24 (in Chinese with English abstract).  doi: 10.11988/ckyyb.20190062
 | 
																													
																						| [4] | 谢文玲, 康燕玉, 高亚辉, 2006. 硅藻休眠孢子生活史的研究进展[J]. 海洋科学, 30(9): 75-78. | 
																													
																						|  | XIE WENLING, KANG YANYU, GAO YAHUI, 2006. Review on the life history of diatom resting spores[J]. Marine Sciences, 30(9): 75-78 (in Chinese with English abstract). | 
																													
																						| [5] | 张萍, 陆家昌, 李朗, 等, 2023. 硅壳和细胞内含物对硅藻沉降速率的影响[J]. 海洋环境科学, 42(6): 927-934. | 
																													
																						|  | ZHANG PING, LU JIACHANG, LI LANG, et al, 2023. Effect of shell and cell inclusion on the sinking rate of diatom[J]. Marine Environmental Science, 42(6): 927-934 (in Chinese with English abstract). | 
																													
																						| [6] | WAITE A, FISHER A, THOMPSON P A, et al, 1997. Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms[J]. Marine Ecology Progress Series, 157: 97-108. | 
																													
																						| [7] | BIENFANG P K, HARRISON P J, QUARMBY L M, 1982. Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms[J]. Marine Biology, 67(3): 295-302. | 
																													
																						| [8] | BOYD P W, CLAUSTRE H, LEVY M, et al, 2019. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 568(7752): 327-335. | 
																													
																						| [9] | DU CLOS K T, KARP-BOSS L, VILLAREAL T A, et al, 2019. Coscinodiscus wailesii mutes unsteady sinking in dark conditions[J]. Biology Letters, 15(3): 20180816. | 
																													
																						| [10] | DU CLOS K T, KARP-BOSS L, GEMMELL B J, 2021. Diatoms rapidly alter sinking behavior in response to changing nutrient concentrations[J]. Limnology and Oceanography, 66(3): 892-900. | 
																													
																						| [11] | DU CLOS K T, GEMMELL B J, 2024. Does the settling column method underestimate phytoplankton sinking speeds?[J]. Royal Society Open Science, 11(2): 231455. | 
																													
																						| [12] | FLANJAK L, VRANA I, CVITEŠIĆ KUŠAN A, et al, 2022. Effects of high temperature and nitrogen availability on the growth and composition of the marine diatom Chaetoceros pseudocurvisetus[J]. Journal of Experimental Botany, 73(12): 4250-4265. | 
																													
																						| [13] | FONT-MUÑOZ J S, JEANNERET R, ARRIETA J, et al, 2019. Collective sinking promotes selective cell pairing in planktonic pennate diatoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 116(32): 15997-16002. | 
																													
																						| [14] | FONT-MUÑOZ J S, SOURISSEAU M, COHEN-SÁNCHEZ A, et al, 2021. Pelagic diatoms communicate through synchronized beacon natural fluorescence signaling[J]. Science Advances, 7(51): eabj5230. | 
																													
																						| [15] | GARCIA M, ODEBRECHT C, 2008. Morphology and ecology of the planktonic diatom Palmerina hardmaniana (Greville) Hasle in southern Brazil[J]. Biota Neotropica, 8(2): 85-90. | 
																													
																						| [16] | GEMMELL B J, OH G, BUSKEY E J, et al, 2016. Dynamic sinking behaviour in marine phytoplankton: rapid changes in buoyancy may aid in nutrient uptake[J]. Proceedings Biological Sciences, 283(1840): 20161126. | 
																													
																						| [17] | GRINSTED A, MOORE J C, JEVREJEVA S, 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 11(5/6): 561-566. | 
																													
																						| [18] | JIMÉNEZ C, CAPASSO J M, EDELSTEIN C L, et al, 2009. Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase[J]. Journal of Experimental Botany, 60(3): 815-828. | 
																													
																						| [19] | KARP-BOSS L, BOSS E, JUMARS P A, 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion[J]. Oceanography and Marine Biology: an Annual Review, 34: 71-107. | 
																													
																						| [20] | LAVOIE M, RAVEN J A, LEVASSEUR M, 2016. Energy cost and putative benefits of cellular mechanisms modulating buoyancy in aflagellate marine phytoplankton[J]. Journal of Phycology, 52(2): 239-251.  doi: 10.1111/jpy.12390
																																					pmid: 27037589
 | 
																													
																						| [21] | LAVOIE M, RAVEN J A, 2020. How can large-celled diatoms rapidly modulate sinking rates episodically?[J]. Journal of Experimental Botany, 71(12): 3386-3389.  doi: 10.1093/jxb/eraa129
																																					pmid: 32161972
 | 
																													
																						| [22] | LEBLANC K, ARÍSTEGUI J, ARMAND L, et al, 2012. A global diatom database-abundance, biovolume and biomass in the world ocean[J]. Earth System Science Data, 4(1): 149-165. | 
																													
																						| [23] | LI ZHENGKE, LI WEI, ZHANG YONG, et al, 2021. Dynamic photophysiological stress response of a model diatom to ten environmental stresses[J]. Journal of Phycology, 57(2): 484-495. | 
																													
																						| [24] | LIN HANZHI, KUZMINOV F I, PARK J, et al, 2016. Phytoplankton. The fate of photons absorbed by phytoplankton in the global ocean[J]. Science, 351(6270): 264-267.  doi: 10.1126/science.aab2213
																																					pmid: 26743625
 | 
																													
																						| [25] | NELSON D M, TRÉGUER P, BRZEZINSKI M A, et al, 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 9(3): 359-372. | 
																													
																						| [26] | NOVAK T, GODRIJAN J, PFANNKUCHEN D M, et al, 2019. Global warming and oligotrophication lead to increased lipid production in marine phytoplankton[J]. Science of the Total Environment, 668: 171-183. | 
																													
																						| [27] | O’BRIEN K R, WAITE A M, ALEXANDER B L, et al, 2006. Particle tracking in a salinity gradient: a method for measuring sinking rate of individual phytoplankton in the laboratory[J]. Limnology and Oceanography: Methods, 4(9): 329-335. | 
																													
																						| [28] | PASSOW U, CARLSON C A, 2012. The biological pump in a high CO2 world[J]. Marine Ecology Progress Series, 470: 249-271. | 
																													
																						| [29] | PELUSI A, DE LUCA P, MANFELLOTTO F, et al, 2021. Virus-induced spore formation as a defense mechanism in marine diatoms[J]. New Phytologist, 229(4): 2251-2259. | 
																													
																						| [30] | PETRUCCIANI A, MORETTI P, ORTORE M G, et al, 2023. Integrative effects of morphology, silicification, and light on diatom vertical movements[J]. Frontiers in Plant Science, 14: 1143998. | 
																													
																						| [31] | RAVEN J A, WAITE A M, 2004. The evolution of silicification in diatoms: inescapable sinking and sinking as escape?[J]. New Phytologist, 162(1): 45-61. | 
																													
																						| [32] | RAVEN J A, DOBLIN M A, 2014. Active water transport in unicellular algae: where, why, and how[J]. Journal of Experimental Botany, 65(22): 6279-6292.  doi: 10.1093/jxb/eru360
																																					pmid: 25205578
 | 
																													
																						| [33] | RIDGWELL A, 2011. Evolution of the ocean’s “biological pump”[J]. Proceedings of the National Academy of Sciences of the United States of America, 108(40): 16485-16486. | 
																													
																						| [34] | ROSENBERG B, KEMENY G, SWITZER R C, et al, 1971. Quantitative evidence for protein denaturation as the cause of thermal death[J]. Nature, 232(5311): 471-473. | 
																													
																						| [35] | SARTHOU G, TIMMERMANS K R, BLAIN S, et al, 2005. Growth physiology and fate of diatoms in the ocean: a review[J]. Journal of Sea Research, 53(1/2): 25-42. | 
																													
																						| [36] | SCHOLZ B, LIEBEZEIT G, 2013. Compatible solutes and fatty acid composition of five marine intertidal microphytobenthic Wadden Sea diatoms exposed to different temperature regimes[J]. Diatom Research, 28(4): 337-358. | 
																													
																						| [37] | SMETACEK V S, 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance[J]. Marine Biology, 84(3): 239-251. | 
																													
																						| [38] | SOURISSEAU M, FONT-MUÑOZ J, BELLOUCHE S, et al, 2024. Sinking rates, orientation, and behavior of pennate diatoms[J]. Journal of Phycology, 60(4): 806-815. | 
																													
																						| [39] | TAN LIJU, XU WENJING, HE XINGLIANG, et al, 2019. The feasibility of Fv/Fm on judging nutrient limitation of marine algae through indoor simulation and in situ experiment[J]. Estuarine, Coastal and Shelf Science, 229: 106411. | 
																													
																						| [40] | UWIZEYE C, DECELLE J, JOUNEAU P H, et al, 2021. Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging[J]. Nature Communications, 12(1): 1049.  doi: 10.1038/s41467-021-21314-0
																																					pmid: 33594064
 | 
																													
																						| [41] | WAITE A M, THOMPSON P A, HARRISON P J, 1992. Does energy control the sinking rates of marine diatoms?[J]. Limnology and Oceanography, 37(3): 468-477. | 
																													
																						| [42] | WATSON A B, AHUMADA JR A J, 1983. A look at motion in the frequency domain[R]. Moffett Field: NASA. | 
																													
																						| [43] | ZETSCHE E M, MEYSMAN F J R, 2012. Dead or alive? viability assessment of micro- and mesoplankton[J]. Journal of Plankton Research, 34(6): 493-509. |