热带海洋学报 ›› 2022, Vol. 41 ›› Issue (3): 1-15.doi: 10.11978/2021130CSTR: 32234.14.2021130
• 海洋地质学 • 下一篇
张锦昌1,2,3(), 杨晓东1,2,3(
), 林婧雪4, 曲梦5, 罗怡鸣6
收稿日期:
2021-09-26
修回日期:
2021-12-10
发布日期:
2021-12-14
通讯作者:
杨晓东
作者简介:
张锦昌(1983—), 男, 广东省肇庆市人, 研究员, 从事海洋地质与地球物理研究。email: 基金资助:
ZHANG Jinchang1,2,3(), YANG Xiaodong1,2,3(
), LIN Jingxue4, QU Meng5, LUO Yiming6
Received:
2021-09-26
Revised:
2021-12-10
Published:
2021-12-14
Contact:
YANG Xiaodong
Supported by:
摘要:
侏罗纪洋壳为现存最古老的海洋地壳, 残留在地球表面上很少, 目前对于侏罗纪洋壳的断裂特征和构造变形了解很少。本文利用高分辨率的反射地震剖面精细解释了位于西太平洋的侏罗纪洋壳基底、沉积地层和断裂结构, 发现在研究区存在基底断层、沉积断层和垮塌断层三种类型的断裂构造, 并对其走向、倾角、断距等几何参数与变形特征进行了推测和定量研究。研究还发现, 基底断层是洋壳受到板块伸展拉张而产生的, 在后期海底沉积过程中持续发育并错断上覆沉积物, 在海底形成明显的断层陡坎。沉积断层是沉积地层自身重力作用的产物,受到沉积地层岩石性质的控制。垮塌断层是岩浆侵出或者侵入形成海山, 导致洋壳及其上覆沉积局部抬升并向两侧推移, 引起先存的基底断层和沉积断层重新错动产生的。研究区内切断洋壳基底和上覆沉积的活动断层的推测走向大体符合侏罗纪洋壳基底面起伏、重力异常骤变界面以及地磁异常条带等的走向, 表明这些断裂从侏罗纪洋中脊的海底扩张中演变而来, 并且持续活动至今。这些发育在古老洋壳上的断层能够长时间让水进入岩石圈并进入俯冲带及地球内部, 从而促进地球水循环。尽管目前尚未发现这些断裂产生大地震, 但这些断层可能随着板块俯冲而演变成俯冲带地震大断裂, 今后研究应该关注这类断层在靠近海沟之前的演化规律和潜在地震风险。
中图分类号:
张锦昌, 杨晓东, 林婧雪, 曲梦, 罗怡鸣. 西太平洋侏罗纪海洋地壳断裂特征及其成因机制*[J]. 热带海洋学报, 2022, 41(3): 1-15.
ZHANG Jinchang, YANG Xiaodong, LIN Jingxue, QU Meng, LUO Yiming. Characteristics and formation mechanisms of faults on the Jurassic oceanic crust in the western Pacific Ocean*[J]. Journal of Tropical Oceanography, 2022, 41(3): 1-15.
图1
研究区的位置 a.西太平洋板块向菲律宾板块俯冲, 黑色箭头表示相对板块运动矢量, 即37.8mm·a-1, 白色圆圈为大洋钻探站位, 307、198、46、800、801、802是站位号码, 红白色圆球表示5级以上地震的震源机制(https://www.globalcmt.org); b. 研究区的多道地震剖面位置, TN272为多道地震剖面的名称。该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)2937号的标准地图制作。海底地形数据来自GEBCO (https://www.gebco.net), 黑色线段是M系列地磁异常条带, 数据来自Stadler 等(2015), Tominaga等 (2015) 和Tominaga等(2021); 黄色线是海洋地壳推测年龄, 数据来自https://ngdc.noaa.gov/mgg/ocean_age/ocean_age_2008.html"
[1] |
陈双双, 刘嘉麒, 2018. 中太平洋山脉白垩纪响岩质碱玄岩的地球化学特征及地质意义[J]. 中国科学 D辑: 地球科学, 48(5): 595-616.
doi: 10.1007/s11430-017-9172-4 |
CHEN SHUANGSHUANG, LIU JIAQI, 2018. Geochemical characteristics and geological significance of Cretaceous phonotephrite from the Mid-Pacific Mountains[J]. Science China Earth Sciences, 61(6): 745-764.
doi: 10.1007/s11430-017-9172-4 |
|
[2] | 陆鹿, 严立龙, 李秋环, 等, 2016. 洋底高原及其对地球系统意义研究综述[J]. 岩石学报, 32(6): 1851-1876. |
YAN LILONG, LI QIUHUAN, et al, 2016. Oceanic plateau and its significances on the Earth system: A review[J]. Acta Petrologica Sinica, 32(6): 1851-1876. (in Chinese with English abstract) | |
[3] | 罗怡鸣, 张锦昌, 林间, 2019. 太平洋大塔穆火山研究进展及对巨型洋底火山成因的启示[J]. 地球物理学进展, 34(2): 781-795. |
LUO YIMING, ZHANG JINCHANG, LIN JIAN, 2019. Recent research advances on the Tamu Massif in the Pacific Ocean and implications for the formation of large oceanic volcanoes[J]. Progress in Geophysics, 34(2): 781-795. (in Chinese with English abstract) | |
[4] | 庞洁红, 李三忠, 戴黎明, 等, 2011. 太平洋洋底高原和海山成因--重点以Shatsky海隆成因为例[J]. 海洋地质与第四纪地质, 31(2): 1-10. |
PANG JIEHONG, LI SANZHONG, DAI LIMING, et al, 2011. Genesis of oceanic plateaus and seamounts in the Pacific Ocean-A case study of Shatsky Rise[J]. Marine Geology & Quaternary Geology, 31(2): 1-10. (in Chinese with English abstract) | |
[5] | 且钟禹, 1996. 普通地质学[M]. 青岛: 青岛海洋大学出版社: 87-100. |
QIE ZHONGYU, 1996. General geology[M]. Qingdao: Qingdao Ocean University Press: 87-100. (in Chinese) | |
[6] | 宋晓晓, 李春峰, 2016. 西太平洋科学大洋钻探的地球动力学成果[J]. 热带海洋学报, 35(1): 17-30. |
SONG XIAOXIAO, LI CHUNFENG, 2016. Geodynamic results of scientific ocean drilling in the western Pacific[J]. Journal of Tropical Oceanography, 35(1): 17-30. (in Chinese with English abstract) | |
[7] | 徐斐, 周祖翼, 2003. 洋底高原: 了解地球内部的窗口[J]. 地球科学进展, 18(5): 745-752. |
XU FEI, ZHOU ZUYI, 2003. Oceanic plateaus: windows to the earth's interior[J]. Advance in Earth Sciences, 18(5): 745-752. (in Chinese with English abstract) | |
[8] | 徐义刚, 2002. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘, 9(4): 341-353. |
XU YIGANG, 2002. Mantle plumes, large igneous provinces and their geologic consequences[J]. Earth Science Frontiers, 9(4): 341-353. (in Chinese with English abstract) | |
[9] | ABRAMS L J, LARSON R L, SHIPLEY T H, et al, 1992. The seismic stratigraphy and sedimentary history of the East Mariana and Pigafetta Basins of the western Pacific[M]// LARSONR L, LANCELOTY. Proceedings of the ocean drilling program. College Station: Scientific Results (vol. 129): 551-561. |
[10] | ABRAMS L J, LARSON R L, SHIPLEY T H, et al, 1993. Cretaceous volcanic sequences and Jurassic Oceanic Crust in the East Mariana and Pigafetta basins of the western Pacific[M]// PRINGLE M S, SAGER W W, SLITER W V, et al. The Mesozoic pacific: geology, tectonics, and volcanism. Washington, DC: American Geophysical Union: 77-101. |
[11] |
BAUDON C, CARTWRIGHT J, 2008. The kinematics of reactivation of normal faults using high resolution throw mapping[J]. Journal of Structural Geology, 30(8): 1072-1084.
doi: 10.1016/j.jsg.2008.04.008 |
[12] | BEHL R J, SMITH B M, 1992. Silicification of deep-sea sediments and the oxygen isotope composition of diagenetic siliceous rocks from the western Pacific, Pigafetta and East Mariana Basins, Leg 129[M]// LARSONR L, LANCELOTY. Proceedings of the ocean drilling program. College Station: Scientific Results (vol. 129): 81-117. |
[13] | BEHN M D, LIN JIAN, ZUBER M T, 2002. Mechanisms of normal fault development at mid-ocean ridges[J]. Journal of Geophysical Research, 107(B4): EPM 7-1-EPM 7-17. |
[14] |
BUCK W R, LAVIER L L, POLIAKOV A N B, 2005. Modes of faulting at mid-ocean ridges[J]. Nature, 434(7034): 719-723.
doi: 10.1038/nature03358 |
[15] |
BUSCH M M, ARROWSMITH J R, UMHOEFER P J, et al, 2011. Geometry and evolution of rift-margin, normal-fault-bounded basins from gravity and geology, La Paz-Los Cabos region, Baja California Sur, Mexico[J]. Lithosphere, 3(2): 110-127.
doi: 10.1130/L113.1 |
[16] |
BUTLER R W H, 2020. Syn-kinematic strata influence the structural evolution of emergent fold-thrust belts[J]. Geological Society, London, Special Publications, 490(1): 57-78.
doi: 10.1144/SP490-2019-14 |
[17] |
CAI CHEN, WIENS D A, SHEN WEISEN, et al, 2018. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data[J]. Nature, 563(7731): 389-392.
doi: 10.1038/s41586-018-0655-4 |
[18] |
CANDE S C, LARSON R L, LABRECQUE J L, 1978. Magnetic lineations in the Pacific Jurassic Quiet Zone[J]. Earth and Planetary Science Letters, 41(4): 434-440.
doi: 10.1016/0012-821X(78)90174-7 |
[19] |
CHOI E S, LAVIER L, GURNIS M, 2008. Thermomechanics of mid-ocean ridge segmentation[J]. Physics of the Earth and Planetary Interiors, 171(1-4): 374-386.
doi: 10.1016/j.pepi.2008.08.010 |
[20] |
CHOY G L, KIRBY S H, 2004. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones[J]. Geophysical Journal International, 159(3): 991-1012.
doi: 10.1111/j.1365-246X.2004.02449.x |
[21] |
COLLANEGA L, SIUDA K, JACKSON C A L, et al, 2019. Normal fault growth influenced by basement fabrics: the importance of preferential nucleation from pre-existing structures[J]. Basin Research, 31(4): 659-687.
doi: 10.1111/bre.12327 |
[22] |
DE CASTRO D L, BEZERRA F H R, SOUSA M O L, et al, 2012. Influence of Neoproterozoic tectonic fabric on the origin of the Potiguar Basin, northeastern Brazil and its links with West Africa based on gravity and magnetic data[J]. Journal of Geodynamics, 54: 29-42.
doi: 10.1016/j.jog.2011.09.002 |
[23] | EMRY E L, WIENS D A, GARCIA-CASTELLANOS D, 2014. Faulting within the Pacific plate at the Mariana trench: implications for plate interface coupling and subduction of hydrous minerals[J]. Journal of Geophysical Research, 119(4): 3076-3095. |
[24] | EWING J, EWING M, AITKEN T, et al, 2012. North Pacific sediment layers measured by seismic profiling[M]// DRAKEC L, HARTP J.The crust and upper mantle of the pacific area. Washington, DC: American Geophysical Union: 147-173. |
[25] | FACCENDA M, GERYA T V, MANCKTELOW N S, et al, 2012. Fluid flow during slab unbending and dehydration: implications for intermediate-depth seismicity, slab weakening and deep water recycling[J]. Geochemistry, Geophysics, Geosystems, 13(1): Q01010. |
[26] | FENG H, LIZARRALDE D, TOMINAGA M, et al, 2015. Extent and impact of Cretaceous magmatism on the formation and evolution of Jurassic oceanic crust in the western Pacific[C]// Proceedings of American geophysical union, fall meeting 2015. |
[27] | FENG H S H, 2016. Seismic constraints on the processes and consequences of secondary igneous evolution of Pacific oceanic lithosphere[D]. Cambridge: Massachusetts Institute of Technology: 57-93. |
[28] |
GIBSON G M, TOTTERDELL J M, WHITE L T, et al, 2013. Pre-existing basement structure and its influence on continental rifting and fracture zone development along Australia's southern rifted margin[J]. Journal of the Geological Society, 170(2): 365-377.
doi: 10.1144/jgs2012-040 |
[29] |
GREENE J A, LIZARRALDE D, TOMINAGA M, et al, 2020. Deep-ocean paleo-seafloor erosion in the northwestern Pacific identified by high-resolution seismic images[J]. Marine Geology, 429: 106330.
doi: 10.1016/j.margeo.2020.106330 |
[30] | HACKER B R, 2008. H2O subduction beyond arcs[J]. Geochemistry, Geophysics, Geosystems, 9(3): Q03001. |
[31] |
HANDSCHUMACHER D W, SAGER W W, HILDE T W C, et al, 1988. Pre-Cretaceous tectonic evolution of the Pacific plate and extension of the geomagnetic polarity reversal time scale with implications for the origin of the Jurassic “Quiet Zone”[J]. Tectonophysics, 155(1-4): 365-380.
doi: 10.1016/0040-1951(88)90275-2 |
[32] |
HEEZEN B C, MACGREGOR I D, FOREMAN H P, et al, 1973. Diachronous deposits: a kinematic interpretation of the post Jurassic sedimentary sequence on the Pacific Plate[J]. Nature, 241(5384): 25-32.
doi: 10.1038/241025a0 |
[33] | HESSE R, 1988. Diagenesis #13. Origin of chert: diagenesis of biogenic siliceous sediments[J]. Geoscience Canada, 15(3): 171-192. |
[34] | HÜNEKE H, HENRICH R, 2011. Chapter 4 - Pelagic sedimentation in modern and ancient oceans[J]. Developments in Sedimentology, 63: 215-351. |
[35] |
JACKSON C A L, ZHANG Y, HERRON D A, et al, 2019. Subsurface expression of a salt weld, Gulf of Mexico[J]. Petroleum Geoscience, 25(1): 102-111.
doi: 10.1144/petgeo2018-008 |
[36] | KARL S M, WANDLESS G A, KARPOFF A M, 1992. Sedimentological and geochemical characteristics of Leg 129 siliceous deposits[M]// LARSONR L, LANCELOTY. Proceedings of the ocean drilling program. College Station: Scientific Results (vol. 129): 31-79. |
[37] | KOPPERS A A P, STAUDIGEL H, DUNCAN R A, 2003. High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin[J]. Geochemistry, Geophysics, Geosystems, 4(11): 8914. |
[38] | LANCELOT Y, LARSON R L, 1975. Sedimentary and tectonic evolution of the northwestern Pacific[M]// LARSONR L, MOBERLYR.Initial reports of the deep sea drilling project 32. Washington, DC:U.S. Government Printing Office: 925-939. |
[39] |
LARSON R L, CHASE C G, 1972. Late Mesozoic evolution of the western Pacific Ocean[J]. GSA Bulletin, 83(12): 3627-3644.
doi: 10.1130/0016-7606(1972)83[3627:LMEOTW]2.0.CO;2 |
[40] |
LARSON R L, HILDE T W C, 1975. A revised time scale of magnetic reversals for the Early Cretaceous and Late Jurassic[J]. Journal of Geophysical Research, 80(17): 2586-2594.
doi: 10.1029/JB080i017p02586 |
[41] | LARSON R L, STEINER M B, ERBA E, et al, 1992. Paleolatitudes and tectonic reconstructions of the oldest portion of the Pacific plate: a comparative study[M]// LARSONR L, LANCELOTY. Proceedings of the ocean drilling program. College Station: Scientific Results (vol. 129): 615-631. |
[42] |
MCNEILL L C, HENSTOCK T J, 2014 Forearc structure and morphology along the Sumatra-Andaman subduction zone[J]. Tectonics, 33(2): 112-134.
doi: 10.1002/2012TC003264 |
[43] | MITCHUM JR R M, VAIL P R, SANGREE J B, 1977. Seismic stratigraphy and global changes of sea level, part 6: stratigraphic interpretation of seismic reflection patterns in depositional sequences[M]// PAYTONC E. Seismic stratigraphy-applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists: 117-143. |
[44] |
MOORE JR T C, 2008. Chert in the pacific: biogenic silica and hydrothermal circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 261(1-2): 87-99.
doi: 10.1016/j.palaeo.2008.01.009 |
[45] |
MORGAN W J, 1968. Rises, trenches, great faults, and crustal blocks[J]. Journal of Geophysical Research, 73(6): 1959-1982.
doi: 10.1029/JB073i006p01959 |
[46] |
MORLEY C K, KING R, HILLIS R, et al, 2011. Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: a review[J]. Earth-Science Reviews, 104(1-3): 41-91.
doi: 10.1016/j.earscirev.2010.09.010 |
[47] | MÜLLER R D, SDROLIAS M, GAINA C, et al, 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust[J]. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. |
[48] |
NAKANISHI M, TAMAKI K, KOBAYASHI K, 1992. Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west-central Pacific Ocean[J]. Geophysical Journal International, 109(3): 701-719.
doi: 10.1111/j.1365-246X.1992.tb00126.x |
[49] |
OGG J G, COE A L, PRZYBYLSKI P A, et al, 2010. Oxfordian magnetostratigraphy of Britain and its correlation to Tethyan regions and Pacific marine magnetic anomalies[J]. Earth and Planetary Science Letters, 289(3-4): 433-448.
doi: 10.1016/j.epsl.2009.11.031 |
[50] |
OSAGIEDE E E, DUFFY O B, JACKSON C A L, et al, 2014. Quantifying the growth history of seismically imaged normal faults[J]. Journal of Structural Geology, 66: 382-399.
doi: 10.1016/j.jsg.2014.05.021 |
[51] |
PARAI R, MUKHOPADHYAY S, 2012. How large is the subducted water flux? New constraints on mantle regassing rates[J]. Earth and Planetary Science Letters, 317-318: 396-406.
doi: 10.1016/j.epsl.2011.11.024 |
[52] | PIMM A C, GARRISON R E, BOYCE R E, 1971. Sedimentology synthesis: lithology, chemistry and physical properties of sediments in the northwestern Pacific Ocean[M]// FISCHER A G. Washington, DC: Initial Reports of the Deep Sea Drilling Project (DSDP 6): 1131-1252. |
[53] |
PROCTER A, SANDERSON D J, 2018. Spatial and layer-controlled variability in fracture networks[J]. Journal of Structural Geology, 108: 52-65.
doi: 10.1016/j.jsg.2017.07.008 |
[54] |
ROTEVATN A, JACKSON C A L, TVEDT A B M, et al, 2019. How do normal faults grow?[J]. Journal of Structural Geology, 125: 174-184.
doi: 10.1016/j.jsg.2018.08.005 |
[55] | ROWAN M G, PEEL F J, VENDEVILLE B C, 2004. Gravity-driven Fold Belts on passive margins[M]//MCCLAY K R. Thrust tectonics and hydrocarbon systems. Tulsa: American Association of Petroleum Geologists: 157-182. |
[56] |
RÜPKE L H, MORGAN J P, HORT M, et al, 2004. Serpentine and the subduction zone water cycle[J]. Earth and Planetary Science Letters, 223(1-2): 17-34.
doi: 10.1016/j.epsl.2004.04.018 |
[57] |
SAGER W W, WEISS C J, TIVEY M A, et al, 1998. Geomagnetic polarity reversal model of deep-tow profiles from the Pacific Jurassic Quiet Zone[J]. Journal of Geophysical Research, 103(B3): 5269-5286.
doi: 10.1029/97JB03404 |
[58] |
SANDWELL D T, MÜLLER R D, SMITH W H F, et al, 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 346(6205): 65-67.
doi: 10.1126/science.1258213 |
[59] | SHIPBOARD SCIENTIFIC PARTY, 1990a. Site 800[C]// LANCELOT Y, LARSON R. Proceedings of the ocean drilling program, initial reports (vol. 129) of the ocean drilling program. College Station: 33-89. |
[60] | SHIPBOARD SCIENTIFIC PARTY 1990b. Site 801[C]// LANCELOT Y, LARSON R. Proceedings of the ocean drilling program, initial reports (vol. 129) of the ocean drilling program. College Station: 91-170. |
[61] |
STADLER T J, TOMINAGA M, 2015. Intraplate volcanism of the western Pacific: new insights from geological and geophysical observations in the Pigafetta Basin[J]. Geochemistry, Geophysics, Geosystems, 16(9): 3015-3033.
doi: 10.1002/2015GC005873 |
[62] | TOMINAGA M, SAGER W W, TIVEY M A, et al, 2008. Deep-tow magnetic anomaly study of the Pacific Jurassic Quiet Zone and implications for the geomagnetic polarity reversal timescale and geomagnetic field behavior[J]. Journal of Geophysical Research, 113(B7): B07110. |
[63] |
TOMINAGA M, TIVEY M A, SAGER W W, 2015. Nature of the Jurassic magnetic quiet zone[J]. Geophysical Research Letters, 42(20): 8367-8372.
doi: 10.1002/2015GL065394 |
[64] | TOMINAGA M, TIVEY M A, SAGER W W, 2021. A new middle to Late Jurassic Geomagnetic Polarity Time Scale (GPTS) from a multiscale marine magnetic anomaly survey of the Pacific Jurassic Quiet Zone[J]. Journal of Geophysical Research, 126(3): e2020JB021136. |
[65] | TOMINAGA M, TIVEY M, LIZARRALDE D, et al, 2012. Multi-channel seismic field data in the Hawaiian Lineation Jurassic magnetic Quiet Zone, North Pacific Ocean, acquired by the R/V Thomas G. Thompson in 2011 (TN272)[DB/OL]. Academic Seismic Portal at UTIG. Marine Geoscience Data System. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.1594/IEDA/500209. |
[66] |
TVEDT A B M, ROTEVATN A, JACKSON C A L, et al, 2013. Growth of normal faults in multilayer sequences: a 3D seismic case study from the Egersund Basin, Norwegian North Sea[J]. Journal of Structural Geology, 55: 1-20.
doi: 10.1016/j.jsg.2013.08.002 |
[67] |
WOLFSON-SCHWEHR M, BOETTCHER M S, MCGUIRE J J, et al., 2014. The relationship between seismicity and fault structure on the Discovery transform fault, East Pacific Rise[J]. Geochemistry, Geophysics, Geosystems, 15(9): 3698-3712.
doi: 10.1002/2014GC005445 |
[68] |
XUE JING, KING S D, 2016. Geodynamic investigation of a Cretaceous superplume in the Pacific ocean[J]. Physics of the Earth and Planetary Interiors, 257: 137-148.
doi: 10.1016/j.pepi.2016.05.018 |
[69] |
YANG XIAODONG, PEEL F J, MCNEILL L C, et al, 2020. Comparison of fold-thrust belts driven by plate convergence and gravitational failure[J]. Earth-Science Reviews, 203: 103136.
doi: 10.1016/j.earscirev.2020.103136 |
[70] |
ZHOU ZHIYUAN, LIN JIAN, BEHN M D, et al, 2015. Mechanism for normal faulting in the subducting plate at the Mariana trench[J]. Geophysical Research Letters, 42(11): 4309-4317.
doi: 10.1002/2015GL063917 |
[1] | 赵明辉, 袁野, 张佳政, 张翠梅, 高金尉, 王强, 孙珍, 程锦辉. 南海北部被动陆缘洋陆转换带张裂-破裂研究新进展[J]. 热带海洋学报, 2024, 43(2): 173-183. |
[2] | 曹令敏, 赵亮, 赵明辉, 丘学林, 袁怀玉. 新西兰弧后塔拉纳基地区地幔楔各向异性*[J]. 热带海洋学报, 2023, 42(1): 124-134. |
[3] | 郭建, 丘学林, 李子正, 黄海波. 南沙地块OBS2019-2测线数据处理与震相识别*[J]. 热带海洋学报, 2022, 41(5): 43-56. |
[4] | 郭晓然, 刘善虎. 台湾海峡OBS地震记录中二次Ps震相的特征及应用[J]. 热带海洋学报, 2022, 41(5): 57-63. |
[5] | 张浩宇, 丘学林, 黄海波. 主动源海底地震仪横波模型的自动搜索与非唯一性分析*[J]. 热带海洋学报, 2022, 41(1): 194-203. |
[6] | 李艳, 吴南, 胡守祥, 赵芳, 詹文欢. 南海白云凹陷东南部两种不同类型块体搬运沉积体系的地震响应及成因分析[J]. 热带海洋学报, 2021, 40(5): 85-100. |
[7] | 李勇航, 贾磊, 倪玉根, 何健, 牟泽霖, 温明明, 单晨晨. 中国台湾浅滩海砂砂体的地球物理特征及有利赋存标志*[J]. 热带海洋学报, 2021, 40(5): 101-110. |
[8] | 赵明辉, 程锦辉, 高金尉, 孙龙涛, 徐亚, 张佳政, 杜峰. 南海东部马尼拉俯冲带深部结构新认识*[J]. 热带海洋学报, 2021, 40(3): 25-33. |
[9] | 张茂传, 徐敏, 赵旭, 张佳政, 查财财, VithanaM.V.P., 狄会哲, 曾信. Kirchhoff向下延拓法在海洋合成多道地震走时反演中的应用*[J]. 热带海洋学报, 2020, 39(4): 80-90. |
[10] | 邢涛, 詹文欢, 李福元, 陈玺. 东沙海域复杂海况下单源单缆长排列地震资料处理*[J]. 热带海洋学报, 2020, 39(4): 91-99. |
[11] | 金震, 郭晓然, 陈方颖. 国产OBS的时间矫正方法——以2019年台湾海峡地壳结构海陆探测实验为例[J]. 热带海洋学报, 2020, 39(3): 42-48. |
[12] | 孟肯, 秦华伟, 朱心科, 侯斐. 一种新型潜浮式深海地震仪的设计与试验[J]. 热带海洋学报, 2020, 39(3): 49-56. |
[13] | 李子正, 丘学林, 邢磊. 基于OBS和MCS数据的水合物地层速度特征[J]. 热带海洋学报, 2020, 39(2): 25-34. |
[14] | 张哲,经志友,唐群署. 利用高分辨率水体反射地震资料研究吕宋海峡以东黑潮区混合[J]. 热带海洋学报, 2019, 38(4): 20-29. |
[15] | 汪俊,邱燕,阎贫,DELESCLUSEM,王彦林,PUBELLIERM,聂鑫. 跨南海西南次海盆OBS、多道地震与重力联合调查[J]. 热带海洋学报, 2019, 38(4): 81-90. |
|