[1] |
包文轩, 宫阿都, 徐澯, 等, 2023. 基于区域灾害系统论的广东省台风灾害风险评估——以“山竹”台风为例[J]. 北京师范大学学报(自然科学版), 59(1): 94-103.
|
|
BAO WENXUAN, GONG A’DU, XU CAN, et al, 2023. Guangdong Province typhoon disaster risk assessment based on regional disaster system theory - Illustrated by the case of “Mangkhut” Typhoon[J]. Journal of Beijing Normal University (Natural Science), 59(1): 94-103 (in Chinese with English abstract).
|
[2] |
陈楷俊, 陈艺仪, 陈菁, 2019. 近30年粤东地区台风灾害风险评估与分析[J]. 水土保持研究, 26(3): 362-366, 372.
|
|
CHEN KAIJUN, CHEN YIYI, CHEN JING, 2019. Risk assessment and analysis of typhoon disaster in east Guangdong in the period 1989—2017[J]. Research of Soil and Water Conservation, 26(3): 362-366, 372 (in Chinese with English abstract).
|
[3] |
陈香, 2007. 福建省台风灾害时空变化分析[J]. 灾害学, 22(4): 66-70.
|
|
CHEN XIANG, 2007. Analysis of temporal and spatial changes of typhoon in Fujian Province[J]. Journal of Catastrophology, 22(4): 66-70 (in Chinese with English abstract).
|
[4] |
高歌, 黄大鹏, 赵珊珊, 2019. 基于信息扩散方法的中国台风灾害年月尺度风险评估[J]. 气象, 45(11): 1600-1610.
|
|
GAO GE, HUANG DAPENG, ZHAO SHANSHAN, 2019. Annual and monthly risk assessment of typhoon disasters in China based on the information diffusion method[J]. Meteorological Monthly, 45(11): 1600-1610 (in Chinese with English abstract).
|
[5] |
黎鑫, 洪梅, 王博, 等, 2012. 南海-印度洋海域海洋安全灾害评估与风险区划[J]. 热带海洋学报, 31(6): 121-127.
|
|
LI XIN, HONG MEI, WANG BO, et al, 2012. Disaster assessment and risk zoning concerning the South China Sea and Indian Ocean safety[J]. Journal of Tropical Oceanography, 31(6): 121-127 (in Chinese with English abstract).
doi: 10.11978/j.issn.1009-5470.2012.06.019
|
[6] |
李超超, 田军仓, 申若竹, 2020. 洪涝灾害风险评估研究进展[J]. 灾害学, 35(3): 131-136.
|
|
LI CHAOCHAO, TIAN JUNCANG, SHEN RUOZHU, 2020. Review on assessment of Flood and Waterlogging Risk[J]. Journal of Catastrophology, 35(3): 131-136 (in Chinese with English abstract).
|
[7] |
李明, 张韧, 洪梅, 2018a. 基于加权贝叶斯网络的海洋灾害风险评估[J]. 海洋通报, 37(2): 121-128.
|
|
LI MING, ZHANG REN, HONG MEI, 2018. Marine disaster risk assessment based on weighted Bayesian Network[J]. Marine Science Bulletin, 37(2): 121-128 (in Chinese with English abstract).
|
[8] |
李明, 张韧, 洪梅, 等, 2018b. 基于信息流改进的贝叶斯网络结构学习算法[J]. 系统工程与电子技术, 40(6): 1385-1390.
|
|
LI MING, ZHANG REN, HONG MEI, et al, 2018. Improved structure learning algorithm of Bayesian network based on information flow[J]. Systems Engineering and Electronics, 40(6): 1385-1390 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001-506X.2018.06.28
|
[9] |
刘合香, 卢耀健, 王萌, 等, 2020. 基于信息扩散技术的华南极端台风灾害风险评估[J]. 热带海洋学报, 39(3): 31-41.
doi: 10.11978/2019071
|
|
LIU HEXANG, LU YAOJIAN, WANG MENG, et al, 2020. Risk assessment of extreme typhoon disasters based on information diffusion technology[J]. Journal of Tropical Oceanography, 39(3): 31-41 (in Chinese with English abstract).
doi: 10.11978/2019071
|
[10] |
民政部门户网站, 2022.06.17. 国家减灾委、民政部紧急启动国家Ⅳ级救灾应急响应协助福建省做好“莫兰蒂”台风灾害救灾工作[EB/OL]. [2016-09-16]. http://www.ndrcc.org.cn/yjgz/10466.jhtml (in Chinese).
|
[11] |
潘金兰, 徐庆娟, 刘合香, 2021. 基于AHP-TOPSIS最优组合赋权的台风灾害风险评估[J]. 南宁师范大学学报(自然科学版), 38(1): 60-67.
|
|
PAN JINLAN, XU QINGJUAN, LIU HEXIANG, 2021. Risk assessment of typhoon disaster in South China based on optimal combination weights of AHP-anti-entropy-TOPSIS[J]. Journal of Nanning Normal University (Natural Science Edition), 38(1): 60-67 (in Chinese with English abstract).
|
[12] |
申怀飞, 杨清洁, 魏亿鑫, 等, 2020. 基于GIS的湖南省滑坡灾害风险和损失评估[J]. 水土保持通报, 40(6): 146-152, 329.
|
|
SHEN HUAIFEI, YANG QINGJIE, WEI YIXIN, et al, 2020. A study on risk and vulnerability assessment of landslide in Hunan Province based on GIS[J]. Bulletin of Soil and Water Conservation, 40(6): 146-152, 329 (in Chinese with English abstract).
|
[13] |
汤国安, 2019. 地理信息系统教程(第二版)[M]. 北京: 高等教育出版社.
|
|
TANG GUO’AN, 2019. Geographic information system tutorial (Second Edition)[M]. Beijing: Higher Education Press (in Chinese).
|
[14] |
王洁, 杨奕杰, 王杰, 等, 2021. 基于近20a历史数据的中国沿海城市台风灾害风险评估[J]. 海洋预报, 38(5): 24-30.
|
|
WANG JIE, YANG YIJIE, WANG JIE, et al, 2021. Typhoon disaster risk assessment of coastal cities in China based on historical data over the past 20 years[J]. Marine Forecasts, 38(5): 24-30 (in Chinese with English abstract).
|
[15] |
王伟, 金贤锋, 2020. 面向国土空间规划的测绘地理信息技术及数据成果服务应用展望[J]. 测绘通报, 12: 58-64.
|
|
WANG WEI, JIN XIANFENG, 2020. Application of surveying and mapping geographical information technology and data achievement service for territorial and spatial planning[J]. Bulletin of Surveying and Mapping, 12: 58-64 (in Chinese with English abstract).
|
[16] |
温家洪, 黄蕙, 陈珂, 等, 2012. 基于社区的台风灾害概率风险评估——以上海市杨浦区富禄里居委地区为例[J]. 地理科学, 32(3): 348-355.
doi: 10.13249/j.cnki.sgs.2012.03.348
|
|
WEN JIAHONG, HUANG HUI, CHEN KE, et al, 2012. Probabilistic Community-based typhoon disaster risk assessment: A case of fululi community, Shanghai[J]. Scientia Geographica Sinica, 32(3): 348-355 (in Chinese with English abstract).
|
[17] |
吴斌, 钱业, 王瑞芳, 等, 2021. 全球气候模式对影响西北太平洋台风强度的大尺度环境因子的模拟评估[J]. 干旱气象, 39(3): 466-479.
|
|
WU BIN, QIAN YE, WANG RUIFANG, et al, 2021. Assessment of large scale environmental factors affecting typhoon intensity in Northwest Pacific Simulated by global climate models[J]. Journal of Arid Meteorology, 39(3): 466-479 (in Chinese with English abstract).
|
[18] |
徐庆娟, 潘金兰, 刘合香, 2020. 基于云模型—风险矩阵的华南台风灾害综合等级评估[J]. 气象与减灾研究, 43(3): 161-169.
|
|
XU QINGJUAN, PAN JINLAN, LIU HEXIANG, 2020. Comprehensive grade assessment of typhoon disaster in South China based on cloud Model-Risk Matrix[J]. Meteorology and Disaster Reduction Research, 43(3): 161-169 (in Chinese with English abstract).
|
[19] |
于小兵, 俞显瑞, 吉中会, 等, 2019. 基于信息扩散的东南沿海台风灾害风险评估[J]. 灾害学, 34(1): 73-77.
|
|
YU XIAOBING, YU XIANRUI, JI ZHONGHUI, et al, 2019. Risk assessment of typhoon disaster in China’s South-East Coastal Areas -Based on information diffusion theory[J]. Journal of Catastrophology, 34(1): 73-77 (in Chinese with English abstract).
|
[20] |
张悦, 李珊珊, 陈灏, 等, 2017. 广东省台风灾害风险综合评估[J]. 热带气象学报, 2017, 33(2): 281-288.
|
|
ZHANG YUE, LI SHANSHAN, CHEN HAO, et al, 2017. Evaluation of typhoon disaster risk in Guangdong province[J]. Journal of Tropical Meteorology, 33(2): 281-288 (in Chinese with English abstract).
|
[21] |
周华任, 张晟, 穆松, 等, 2015. 综合评价方法及其军事应用[M]. 北京: 清华大学出版社.
|
|
ZHOU HUAREN, ZHANG SHENG, MU SONG, et al, 2015. Comprehensive evaluation method and its military[M]. Beijing: Tsinghua University Press (in Chinese).
|
[22] |
朱婧, 陆逸, 李国平, 等, 2017. 基于县级分辨率的福建省台风灾害风险评估[J]. 灾害学, 32(3): 204-209.
|
|
ZHU JING, LU YI, LI GUOPING, et al, 2017. Risk assessment of typhoon disasters in Fujian Province of Each County[J]. Journal of Catastrophology, 32(3): 204-209 (in Chinese with English abstract)
|
[23] |
朱婧, 叶龙彬, 陈德花, 等, 2020. 1614号台风“莫兰蒂”在厦门湾及其周边海域引发风暴潮的数值模拟[J]. 海洋预报, 37(6): 20-30.
|
|
ZHU JING, YE LONGBIN, CHEN DEHUA, et al, 2020. Numerical simulation of storm surge in Xiamen Bay and its adjacent seas caused by typhoon “Moranti” (1614)[J]. Marine Forecasts, 37(6): 20-30 (in Chinese with English abstract).
|
[24] |
中国新闻网, 2022.06.17. “莫兰蒂”台风造成浙闽直接经济损失210.73亿元[EB/OL]. http://news.cri.cn/uc-eco/20160918/660ac9c9-c670-1ba3-a8a2-c93667984aab.html (in Chinese).
|
[25] |
CAI LIN, LI YINGBING, CHEN MIN, et al, 2020. Tropical cyclone risk assessment for China at the provincial level based on clustering analysis[J]. Geomatics, Natural Hazards and Risk, 11(1): 869-886.
doi: 10.1080/19475705.2020.1753823
|
[26] |
CAO YONG HUI, 2014. Study of four types of learning bayesian networks cases[J]. Applied Mathematics & Information Sciences, 8(1): 379-386.
|
[27] |
CHEN XIAOYU, WU LIGUANG, ZHANG JIAOYAN, 2011. Increasing duration of tropical cyclones over China[J]. Geophysical Research Letters, 38(2): L0278.
|
[28] |
CHOU JIEMING, DONG WENJIE, TU GANG, et al, 2020. Spatiotemporal distribution of landing tropical cyclones and disaster impact analysis in coastal China during 1990—2016[J]. Physics and Chemistry of the Earth, 115: 102830.
|
[29] |
COLACE F, DE SANTO M, GRECO L, 2014. Learning bayesian network structure using a MultiExpert Approach[J]. International Journal of Software Engineering and Knowledge Engineering, 24(2): 269-284.
doi: 10.1142/S0218194014500119
|
[30] |
GAO ZHICHENG, WAN RONGJIN, YE QIAN, et al, 2020. Typhoon disaster risk assessment based on emergy theory: A case study of Zhuhai City, Guangdong Province, China[J]. Sustainability, 12(10): 4212.
doi: 10.3390/su12104212
|
[31] |
HOQUE M A-A, PHINN S, ROELFSEMA C, 2017. A systematic review of tropical cyclone disaster management research using remote sensing and spatial analysis[J]. Ocean & Coastal Management, 146: 109-120.
|
[32] |
HOQUE M A-A, PRADHAN B, AHMED N, et al, 2019. Tropical cyclone risk assessment using geospatial techniques for the eastern coastal region of Bangladesh[J]. Science of the Total Environment, 692: 10-22.
doi: 10.1016/j.scitotenv.2019.07.132
|
[33] |
KIM J-M, SON K, KIM Y-J, 2019. Assessing regional typhoon risk of disaster management by clustering typhoon paths[J]. Environment Development and Sustainability, 21(5): 2083-2096.
doi: 10.1007/s10668-018-0086-2
|
[34] |
KNAPP K R, KRUK M C, LEVINSON D H, et al, 2010. The international best track archive for climate stewardship (IBTrACS) Unifying Tropical Cyclone Data[J]. Bulletin of the American Meteorological Society, 2010, 91(3): 363-376.
doi: 10.1175/2009BAMS2755.1
|
[35] |
LI MING, ZHANG REN, LIU KEFENG, 2021a. A new marine disaster assessment model combining bayesian network with information diffusion[J]. Journal of Marine Science and Engineering, 9(6): 640.
doi: 10.3390/jmse9060640
|
[36] |
LI MING, ZHANG REN, LIU KEFENG, 2021b. Risk assessment of marine environments along the South China Sea and North Indian Ocean on the basis of a Weighted Bayesian Network[J]. Journal of Ocean University of China, 20(3): 521-531.
doi: 10.1007/s11802-021-4631-5
|
[37] |
LI ZHUANG, HU SHENPING, GAO GUOPING, et al, 2021. Risk reasoning from factor correlation of maritime traffic under arctic sea ice status association with a bayesian belief network[J]. Sustainability, 13(1): 147.
doi: 10.3390/su13010147
|
[38] |
LIU ZHANSHENG, JIAO YUEYUE, LI ANXIU, et al, 2021. Risk assessment of Urban Rail Transit PPP project construction based on bayesian network[J]. Sustainability, 13(20): 11507.
doi: 10.3390/su132011507
|
[39] |
PANG SULIN, LI SHUHAN, HU XIAOFENG, 2020. Typhoon carrier disaster loss index models and application based on principal component analysis[J]. Journal of Coastal Research, 108(S1): 68-72.
|
[40] |
PAUL S, GHEBREYESUS D, SHARIF H O, 2019. Brief communication: Analysis of the fatalities and Socio-Economic impacts caused by hurricane florence[J]. Geosciences, 9(2): 58.
doi: 10.3390/geosciences9020058
|
[41] |
PUOTINEN M L, 2007. Modelling the risk of cyclone wave damage to coral reefs using GIS: a case study of the Great Barrier Reef, 1969—2003[J]. International Journal of Geographical Information Science, 21(1): 97-120.
doi: 10.1080/13658810600852230
|
[42] |
SAJJAD M, CHAN J C L, KANWAL S, 2020. Integrating spatial statistics tools for coastal risk management: A case-study of typhoon risk in the mainland of China[J]. Ocean & Coastal Management, 184: 105018.
|
[43] |
WANG WEI, DING FENG, DAI JIYANG, 2012. Maximum likelihood least squares identification for systems with autoregressive moving average noise[J]. Applied Mathematical Modelling, 36(5): 1842-1853.
doi: 10.1016/j.apm.2011.07.083
|
[44] |
WU JIANSONG, HU ZHUQIANG, CHEN JINYUE, et al, 2018. Risk assessment of underground subway stations to fire disasters using Bayesian Network[J]. Sustainability, 10(10): 3810.
doi: 10.3390/su10103810
|
[45] |
WU ZENING, SHEN YANXIA, WANG HUILIANG, et al, 2019. Assessing urban flood disaster risk using Bayesian network model and GIS applications[J]. Geomatics, Natural Hazards and Risk, 10(1): 2163-2184.
doi: 10.1080/19475705.2019.1685010
|
[46] |
YU XIPING, NIU XIAOJING, ZHOU HAOJIE, 2016. Statistical law for tropical cyclone motion in the Northwest Pacific Ocean[J]. International Journal of Climatology, 36(4): 1700-1707.
doi: 10.1002/joc.2016.36.issue-4
|
[47] |
ZHANG YONG, FAN GAOFENG, HE YUE, et al, 2017. Risk assessment of typhoon disaster for the Yangtze River Delta of China[J]. Geomatics, Natural Hazards and Risk, 8(2): 1580-1591.
doi: 10.1080/19475705.2017.1362040
|
[48] |
ZHOU MINDAN, KUANG YAOQIU, RUAN ZHU, et al, 2021. Geospatial modeling of the tropical cyclone risk in the Guangdong Province, China[J]. Geomatics Natural Hazards & Risk, 12(1): 2931-2955.
|