[1] |
杜军兰, 邹常胜, 袁钟才, 等, 2003. 海水营养盐现场自动分析技术[J]. 海洋技术, 22(3):37-42.
|
|
DU LANJUN, ZOU CHANGSHENG, YUAN ZHONGCAI, et al, 2003. The in situ autonomous analysis technology of seawater nutrient[J]. Ocean Technology, 22(3):37-42 (in Chinese with English abstract).
|
[2] |
方涛, 冯志华, 高磊, 2012. 长江口南支水域营养盐和叶绿素a的潮周期变化[J]. 海洋湖沼通报, (3):58-65.
|
|
FANG TAO, FENG ZHIHUA, GAO LEI, 2012. Variation with tidal cycle of nutrients and chlorophyll a in the southern branch of Changjiang estuary[J]. Transactions of Oceanology and Limnology, (3):58-65 (in Chinese with English abstract).
|
[3] |
郭翠莲, 张述伟, 程永强, 等, 2018. 海水五参数原位营养盐分析仪的研制[J]. 山东科学, 31(2):1-8.
|
|
GUO CUILIAN, ZHANG SHUWEI, CHENG YONGQIANG, et al, 2018. Development of five-parameter in situ seawater nutrients analyzer[J]. Shandong Science, 31(2):1-8 (in Chinese with English abstract).
|
[4] |
李丹, 冯巍巍, 陈令新, 等, 2016. 一种基于紫外光谱法的海水硝酸盐在线监测系统[J]. 光谱学与光谱分析, 36(2):442-444.
|
|
LI DAN, FENG WEIWEI, CHEN LINGXIN, et al, 2016. An on-line monitoring system for nitrate in seawater based on UV spectrum[J]. Spectroscopy and Spectral Analysis, 36(2):442-444 (in Chinese with English abstract).
|
[5] |
李晖, 杜军兰, 哈谦, 等, 2018. 船载海洋水质自动监测系统研制和应用[J]. 环境影响评价, 40(6):67-70.
|
|
LI HUI, DU JUNLAN, HA QIAN, et al, 2018. Research and application of shipboard automatic monitoring system for marine water quality[J]. Environmental Impact Assessment, 40(6):67-70 (in Chinese with English abstract).
|
[6] |
马然, 曹煊, 刘岩, 等, 2016. 基于微流控技术的营养盐原位分析方法的研究[J]. 传感技术学报, 29(11):1659-1665.
|
|
MA RAN, CAO XUAN, LIU YAN, et al, 2016. The research of nutrients in situ analysis method based on microfluidic technology[J]. Chinese Journal of Sensors and Actuators, 29(11):1659-1665 (in Chinese with English abstract).
|
[7] |
潘俊, 于非, 任强, 等, 2017. 基于光学传感器在南黄海硝酸盐调查中的使用初探[J]. 海洋科学, 41(12):9-16.
|
|
PAN JUN, YU FEI, REN QIANG, et al, 2017. Reliability analysis of spatial and temporal nitrate variations estimated by SUNA in the South Yellow Sea[J]. Marine Sciences, 41(12):9-16 (in Chinese with English abstract).
|
[8] |
潘明祥, 张正斌, 王肇鼎, 等, 2000. 大亚湾海水微表层生物-化学研究Ⅱ. (二)生物-化学特性的周日变化规律[J]. 热带海洋, 19(2):57-63.
|
|
PAN MINGXIANG, ZHANG ZHENGBIN, WANG ZHAODING, et al, 2000. Biological and chemical studies of sea-surface microlayer at Daya BayⅡ. (B) Diurnal variations of biological and chemical characteristics pan[J]. Tropic Oceanology, 19(2):57-63 (in Chinese with English abstract).
|
[9] |
綦声波, 任军博, 马然, 等, 2019. 基于分光光度法的多量程海水营养盐原位传感器检测系统设计[J]. 海洋科学, 43(11):76-83.
|
|
QI SHENGBO, REN JUNBO, MA RAN, et al, 2019. Design of a multi-range, in-situ sensor detection system for seawater nutrient salt based on spectrophotometry[J]. Marine Sciences, 43(11):76-83 (in Chinese with English abstract).
|
[10] |
孙兆华, 曹文熙, 赵俊, 等, 2008. 基于长光程技术的痕量海水营养盐自动分析仪的设计与测试[J]. 光谱学与光谱分析, 28(12):3000-3003.
|
|
SUN ZHAOHUA, CAO WENXI, ZHAO JUN, et al, 2008. Construction and test of long pathlength automated analyzer of trace nutrients in seawater[J]. Spectroscopy and Spectral Analysis, 28(12):3000-3003 (in Chinese with English abstract).
|
[11] |
肖靖泽, 赵萍, 魏月仙, 等, 2011. 五参数全自动营养盐分析仪的研制与应用[J]. 现代科学仪器,(1): 63-65, 68.
|
|
XIAO JINGZE, ZHAO PING, WEI YUEXIAN, et al, 2011. Development and application of five parameters automatic seawater nutrients analyzer[J]. Modern Scientific Instruments,(1): 63-65, 68. (in Chinese with English abstract).
|
[12] |
邹常胜, 2001. 海水营养盐现场监测[J]. 海洋技术, 20(4):33-37.
|
|
ZOU CHANGSHENG, 2001. In-situ measurement of seawater nutrient[J]. Ocean Technology, 20(4):33-37 (in Chinese with English abstract).
|
[13] |
ADORNATO L R, KALTENBACHER E A, GREENHOW D R, et al, 2007. High-resolution in situ analysis of nitrate and phosphate in the oligotrophic ocean[J]. Environmental Science and Technology, 41(11):4045-4052.
doi: 10.1021/es0700855
|
[14] |
AOYAMA M, ANSTEY C, CLARKE B J, et al, 2008. Intercomparison Exercise for Reference Material for Nutrients in Seawater in a Seawater Matrix[R]. Yokosuka: Japan Agency for Marine-Earth Science and Technology.
|
[15] |
AOYAMA M, CLARKE B J, BECKER S, et al, 2006. Intercomparison Exercise for Reference Material for Nutrients in Seawater in a Seawater Matrix[R]. Yokosuka: Japan Agency for Marine-Earth Science and Technology.
|
[16] |
BARUS C, LEGRAND D C, STRIEBIG N, et al, 2018. First deployment and validation of in situ silicate electrochemical sensor in seawater[J]. Frontiers in Marine Science, 5:60.
doi: 10.3389/fmars.2018.00060
|
[17] |
BARUS C, ROMANYTSIA I, STRIEBIG N, et al, 2016. Toward an in situ phosphate sensor in seawater using Square Wave Voltammetry[J]. Talanta, 160:417-424.
doi: 10.1016/j.talanta.2016.07.057
|
[18] |
COLLOS Y, MORNET F, SCIANDRA A, et al, 1999. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures[J]. Journal of Applied Phycology, 11(2):179-184.
doi: 10.1023/A:1008046023487
|
[19] |
CUARTERO M, CRESPO G A, BAKKER E, 2015. Tandem electrochemical desalination-potentiometric nitrate sensing for seawater analysis[J]. Analytical Chemistry, 87(16):8084-8089.
doi: 10.1021/acs.analchem.5b01973
|
[20] |
DAI NINHAN, WANG LIFANG, GUO XIANGHUI, et al, 2008. Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary, China[J]. Biogeosciences, 5:1227-1244.
doi: 10.5194/bg-5-1227-2008
|
[21] |
DEGRANDPRE M D, BELLERBY R G J, 1995. Chemical sensors in marine science[J]. Oceanus, 38(1):30-32.
|
[22] |
DU CHUANJUN, LIU ZHIYU, DAI MINHAN, et al, 2013. Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: insights from an isopycnal mixing model[J]. Biogeosciences, 10:6419-6432.
doi: 10.5194/bg-10-6419-2013
|
[23] |
EGLI P J, VEITCH S P, HANSON A K, 2009. Sustained, autonomous coastal nutrient observations aboard moorings and vertical profilers[C]// Proceeding of OCEANS 2009. Biloxi, MS, USA: IEEE: 1-9.
|
[24] |
ETHERIDGE J R, BIRGAND F, OSBORNE J A, et al, 2014. Using in situ ultraviolet-visual spectroscopy to measure nitrogen, carbon, phosphorus, and suspended solids concentrations at a high frequency in a brackish tidal marsh[J]. Limnology and Oceanography: Methods, 12(1):10-22.
doi: 10.4319/lom.2014.12.10
|
[25] |
FINCH M S, HYDES D J, CLAYSON C H, et al, 1998. A low power ultra violet spectrophotometer for measurement of nitrate in seawater: Introduction, calibration and initial sea trials[J]. Analytica Chimica Acta, 377(2-3):167-177.
doi: 10.1016/S0003-2670(98)00616-3
|
[26] |
FRANK C, MEIER D, VOß D, et al, 2014. Computation of nitrate concentrations in coastal waters using an in situ ultraviolet spectrophotometer: Behavior of different computation methods in a case study a steep salinity gradient in the southern North Sea[J]. Methods in Oceanography, 9:34-43.
doi: 10.1016/j.mio.2014.09.002
|
[27] |
GILBERT M, NEEDOBA J, KOCH C, et al, 2013. Nutrient loading and transformations in the Columbia River estuary determined by high-resolution in situ sensors[J]. Estuaries and Coasts, 36(4):708-727.
doi: 10.1007/s12237-013-9597-0
|
[28] |
GLASGOW H B, BURKHOLDER J M, REED R, et al, 2004. Real-time remote monitoring of water quality: a review of current applications, and advancements in sensor, telemetry, and computing technologies[J]. Journal of Experimental Marine Biology and Ecology, 300(1-2):409-448.
doi: 10.1016/j.jembe.2004.02.022
|
[29] |
HAN AIQIN, DAI MINHAN, KAO SHUHJI, et al, 2012. Nutrient dynamics and biological consumption in a large continental shelf system under the influence of both a river plume and coastal upwelling[J]. Limnology and Oceanography, 57(2):486-502.
doi: 10.4319/lo.2012.57.2.0486
|
[30] |
HANRAHAN G, PATIL D G, WANG J, 2004. Electrochemical sensors for environmental monitoring: Design, development and applications[J]. Journal of Environmental Monitoring, 6(8):657-664.
doi: 10.1039/b403975k
|
[31] |
HARRIS G P, 1980. Temporal and spatial scales in phytoplankton ecology. mechanisms, methods, models, and management[J]. Canadian Journal of Fisheries and Aquatic Sciences, 37(5):877-900.
doi: 10.1139/f80-117
|
[32] |
JOHNES P J, 2007. Uncertainties in annual riverine phosphorus load estimation: Impact of load estimation methodology, sampling frequency, baseflow index and catchment population density[J]. Journal of Hydrology, 332(1-2):241-258.
doi: 10.1016/j.jhydrol.2006.07.006
|
[33] |
JOHNSON K S, COALE K H, JANNASCH H W, 1992. Analytical chemistry in oceanography[J]. Analytical Chemistry, 64(22):1065A-1075A.
|
[34] |
JOHNSON K S, COLETTI L J, 2002. In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 49(7):1291-1305.
doi: 10.1016/S0967-0637(02)00020-1
|
[35] |
JOHNSON K S, NEEDOBA J A, RISER S C, et al, 2007. Chemical sensor networks for the aquatic environment[J]. Chemical Reviews, 107(2):623-640.
doi: 10.1021/cr050354e
|
[36] |
JOHNSON K S, RISER S C, KARL D M, 2010. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre[J]. Nature, 465(7301):1062-1065.
doi: 10.1038/nature09170
|
[37] |
KNUST K N, HLUSHKOU D, ANAND R K, et al, 2013. Electrochemically mediated seawater desalination[J]. Angewandte Chemie International Edition, 52(31):8107-8110.
doi: 10.1002/anie.v52.31
|
[38] |
LACOMBE M, GARÇON V, THOURON D, et al, 2008. Silicate electrochemical measurements in seawater: chemical and analytical aspects towards a reagentless sensor[J]. Talanta, 77(2):744-750.
doi: 10.1016/j.talanta.2008.07.023
|
[39] |
LE BRIS N, SARRADIN P M, BIROT D, et al, 2000. A new chemical analyzer for in situ measurement of nitrate and total sulfide over hydrothermal vent biological communities[J]. Marine Chemistry, 72(1):1-15.
doi: 10.1016/S0304-4203(00)00057-8
|
[40] |
LI Q P, HANSELL D A, ZHANG JIAZHONG, 2008. Underway monitoring of nanomolar nitrate plus nitrite and phosphate in oligotrophic seawater[J]. Limnology and Oceanography: Methods, 6(9):319-326.
doi: 10.4319/lom.2008.6.319
|
[41] |
MA JIAN, YUAN YUAN, YUAN DONGXING, 2017. Underway analysis of nanomolar dissolved reactive phosphorus in oligotrophic seawater with automated on-line solid phase extraction and spectrophotometric system[J]. Analytica Chimica Acta, 950:80-87.
doi: 10.1016/j.aca.2016.11.029
|
[42] |
MASSERINI R T JR, FANNING K A, 2000. A sensor package for the simultaneous determination of nanomolar concentrations of nitrite, nitrate, and ammonia in seawater by fluorescence detection[J]. Marine Chemistry, 68(4):323-333.
doi: 10.1016/S0304-4203(99)00088-2
|
[43] |
MILLS D K, GREENWOOD N, KRÖGER S, et al, 2004. New approaches to improve the detection of eutrophication in UK coastal waters[C]// 2004 USA-Baltic Internation symposium. Klaipeda, Lithuania: IEEE: 1-7.
|
[44] |
MOSCETTA P, SANFILIPPO L, SAVINO E, et al, 2009. Instrumentation for continuous monitoring in marine environments[C]// Proceeding of OCEANS 2009. Biloxi, MS, USA: IEEE: 1-10.
|
[45] |
MÜLLER B, REINHARDT M, GÄCHTER R, 2003. High temporal resolution monitoring of inorganic nitrogen load in drainage waters[J]. Journal of Environmental Monitoring, 5(5):808-812.
doi: 10.1039/B305206K
|
[46] |
PLANT J N, JOHNSON K S, NEEDODA J A, et al, 2009. NH4-Digiscan: An in situ and laboratory ammonium analyzer for estuarine, coastal, and shelf waters[J]. Limnology and Oceanography: Methods, 7(2):144-156.
doi: 10.4319/lom.2009.7.144
|
[47] |
RUSJAN S, BRILLY M, MIKOŠ M, 2008. Flushing of nitrate from a forested watershed: An insight into hydrological nitrate mobilization mechanisms through seasonal high-frequency stream nitrate dynamics[J]. Journal of Hydrology, 354(1-4):187-202.
doi: 10.1016/j.jhydrol.2008.03.009
|
[48] |
SAKAMOTO C M, JOHNSON K S, COLETTI L J, 2009. Improved algorithm for the computation of nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer[J]. Limnology and Oceanography: Methods, 7(1):132-143.
doi: 10.4319/lom.2009.7.132
|
[49] |
SIEBEN V J, FLOQUET C F A, OGILVIE I R G, et al, 2010. Microfluidic colourimetric chemical analysis system: Application to nitrite detection[J]. Analytical Methods, 2(5):484-491.
doi: 10.1039/c002672g
|
[50] |
SNYDER L, BOWDEN W B, 2014. Nutrient dynamics in an oligotrophic Arctic stream monitored in situ by wet chemistry methods[J]. Water Resources Research, 50(3):2039-2049.
doi: 10.1002/2013WR014317
|
[51] |
STEIMLE E T, KALTENBACHER E A, BYRNE R H, 2002. In situ nitrite measurements using a compact spectrophotometric analysis system[J]. Marine Chemistry, 77(4):255-262.
doi: 10.1016/S0304-4203(02)00003-8
|
[52] |
VAN DEN BROEKE J, LANGERGRABER G, WEINGARTNER A, 2006. On-line and in-situ UV/vis spectroscopy for multi-parameter measurements: A brief review[J]. Spectroscopy Europe, 18(4):1-4.
|
[53] |
VINCENT A G, PASCAL R W, BEATON A D, et al, 2018. Nitrate drawdown during a shelf sea spring bloom revealed using a novel microfluidic in situ chemical sensor deployed within an autonomous underwater glider[J]. Marine Chemistry, 205:29-36.
doi: 10.1016/j.marchem.2018.07.005
|
[54] |
VUILLEMIN R, SANFILIPPO L, MOSCETTA P, et al, 2009. Continuous nutrient automated monitoring on the Mediterranean Sea using in situ flow analyser[C]// Proceeding of OCEANS 2009. Biloxi, MS, USA: IEEE: 1-8.
|
[55] |
WORSFOLD P J. 2006. Challenges in the determination of nutrient species in natural waters[J]. Microchimica Acta, 154(1-2):45-48.
|
[56] |
ZIELINSKI O, VOß D, SAWORSKI B, et al, 2011. Computation of nitrate concentrations in turbid coastal waters using an in situ ultraviolet spectrophotometer[J]. Journal of Sea Research, 65(4):456-460.
doi: 10.1016/j.seares.2011.04.002
|