[1] |
程丽巍, 邹定辉, 郑青松, 等, 2010. 光照和温度对氮饥饿及饱和营养条件下石莼(Ulva lactuca)的硝态氮吸收动力学影响[J]. 生态学杂志, 29(5): 939-944.
|
|
CHENG LIWEI, ZOU DINGHUI, ZHENG QINGSONG, et al, 2010. Effects of temperature and light intensity on the nitrate uptake kinetics of nitrogen starved and replete Ulva lactuca[J]. Chinese Journal of Ecology, 29(5): 939-944. (in Chinese with English abstract)
|
[2] |
丁柳丽, 邹定辉, 刘露, 等, 2015. 气候变化对海藻龙须菜生长与光合作用耐热特性的影响[J]. 生态学报, 35(10): 3267-3277.
|
|
DING LIULI, ZOU DINGHUI, LIU LU, et al, 2015. Effect of climate change on the growth and photosynthetic thermal tolerance in the marine macroalga Gracilaria lemaneiformis[J]. Acta Ecologica Sinica, 35(10): 3267-3277. (in Chinese with English abstract)
|
[3] |
董潇潇, 靳红磊, 王宏斌, 2016. 植物光系统高光适应机制研究进展[J]. 植物生理学报, 52(11): 1725-1732.
|
|
DONG XIAOXIAO, JIN HONGLEI, WANG HONGBIN, 2016. Research progress on adaptive mechanisms of photosystem to highlight in plants[J]. Plant Physiology Journal, 52(11): 1725-1732. (in Chinese with English abstract)
|
[4] |
高坤山, 2014. 藻类固碳—理论、进展与方法[M]. 北京: 科学出版社: 1-491.
|
|
GAO KUNSHAN, 2014. Algal carbon fixation - basis, advances and methods[M]. Beijing: Science Press: 1-491. (in Chinese)
|
[5] |
高秀秀, 李亚鹤, 段维军, 等, 2015. 光强和二氧化碳浓度变化对浒苔幼苗生长及生理的影响[J]. 海洋学报, 37(10): 80-87.
|
|
GAO XIUXIU, LI YAHE, DUAN WEIJUN, et al, 2015. The effects of light and increased CO2 on the growth and physiological performances in marine green algae Ulva prolifera seedling[J]. Haiyang Xuebao, 37(10): 80-87. (in Chinese with English abstract)
|
[6] |
郭辉, 2014. 海葡萄(Caulerpa lentillifera)切断组织再生培养及发育条件研究[D]. 青岛: 中国科学院研究生院(海洋研究所).
|
|
GUO HUI, 2014. Culture conditions for regeneration and development of segments of Caulerpa lentillifera[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences. (in Chinese with English abstract)
|
[7] |
黄丹, 刘东超, 王晓梁, 等, 2019. 不同温度下长茎葡萄蕨藻无机碳利用[J]. 广东海洋大学学报, 39(3): 61-69.
|
|
HUANG DAN, LIU DONGCHAO, WANG XIAOLIANG, et al, 2019. Utilization of inorganic carbon of Caulerpa lentillifera under different temperature[J]. Journal of Guangdong Ocean University, 39(3): 61-69. (in Chinese with English abstract)
|
[8] |
姜芳燕, 宋文明, 杨宁, 等, 2014. 长茎葡萄蕨藻的人工养殖技术研究[J]. 热带农业科学, 34(8): 99-103.
|
|
JIANG FANGYAN, SONG WENMING, YANG NING, et al, 2014. Artificial culture technology of Caulerpa lentillifera[J]. Chinese Journal of Tropical Agriculture, 34(8): 99-103. (in Chinese with English abstract)
|
[9] |
兰志刚, 李新仲, 肖钢, 等, 2016. 海上浮式核电站温排水对海洋生态环境的影响[J]. 海洋科学, 40(6): 84-88.
|
|
LAN ZHIGANG, LI XINZHONG, XIAO GANG, et al, 2016. Potential impacts of thermal discharge on marine environment from offshore floating nuclear power plant[J]. Marine Sciences, 40(6): 84-88. (in Chinese with English abstract)
|
[10] |
李红, 党晨阳, 张金荣, 2018. 三种马尾藻不同部位挥发性成分的比较分析[J]. 食品工业科技, 39(24): 281-288, 293.
|
|
LI HONG, DANG CHENYANG, ZHANG JINRONG, 2018. Comparative analysis of volatile components in different parts of three species of Sargassum[J]. Science and Technology of Food Industry, 39(24): 281-288, 293. (in Chinese with English abstract)
|
[11] |
柳波, 孙彬, 马家海, 2003. 经济海藻资源的开发利用[J]. 渔业现代化, (3): 35-36.
|
|
LIU BO, SUN BIN, MA JIAHAI, 2013. Development and utilization of economic seaweed resources[J]. Fishery Modernization, (3): 35-36. (in Chinese)
|
[12] |
聂修和, 聂宜茂, 聂俊华, 等, 1992. 光合有效辐射测量原理及其单位换算[J]. 山东农业大学学报(自然科学版), 23(3): 247-253, 258.
|
|
NIE XIUHE, NIE YIMAO, NIE JUNHUA, et al, 1992. The principle for measuring available photosynthetic radiation and related conversion of units[J]. Journal of Shandong Agricultural University(Natural Science Edition), 23(3): 247-253, 258 (in Chinese with Englishi abstract).
|
[13] |
沈国英, 黄凌风, 郭丰, 等, 2010. 海洋生态学[M]. 北京: 科学出版社: 1-360.
|
|
SHEN GUOYING, HUANG LINGFENG, GUO FENG, et al, 2010. Marine ecology[M]. Beijing: Science Press: 1-364. (in Chinese)
|
[14] |
施建宏, 2008. 台湾蕨藻之调查与养殖研究[D]. 中国台湾: 国立中山大学.
|
|
SHI JIANHONG, 2008. Investigation and cultivation of pteridophyte in Taiwan[D]. Taiwan, China: National Sun Yat-sen University. (in Chinese with English abstract)
|
[15] |
苏醒, 邹潇潇, 朱军, 等, 2017. 不同光强处理对长茎葡萄蕨藻叶绿素荧光特性的影响[J]. 中国水产科学, 24(4): 783-790.
|
|
SU XING, ZOU XIAOXIAO, ZHU JUN, et al, 2017. Effects of light intensity on chlorophyll fluorescence characteristics of Caulerpa lentillifera[J]. Journal of Fishery Sciences of China, 24(4): 783-790. (in Chinese with English abstract)
|
[16] |
吴启藩, 2017. 不同LED光源对长茎葡萄蕨藻生长、生理生化特性及品质的影响[D]. 湛江: 广东海洋大学.
|
|
WU QIFAN, 2017. Effects of LED light source on growth, physiological characteristics and quality of Caulerpa lentillifera[D]. Zhanjiang: Guangdong Ocean University. (in Chinese with English abstract)
|
[17] |
杨宇峰, 2016. 近海环境生态修复与大型海藻资源利用[M]. 北京: 科学出版社:1-364.
|
|
YANG YUFENG, 2016. Coastal environmental bioremediation and seaweed resource utilization[M]. Beijing: Science Press: 1-364. (in Chinese)
|
[18] |
姚瑶, 2016. 环境因子对针叶蕨藻(Caulerpa sertularioides)生长及氨氮吸收动力学的影响[D]. 海口: 海南大学.
|
|
2016. The influence of environmental factors on uptake kinetics mechanism of ammonia and growth of Caulerpa sertularioides[D]. Haikou: Hainan University. (in Chinese with English abstract)
|
[19] |
余江, 杨宇峰, 聂湘平, 2007. 大型海藻龙须菜对重金属镉胁迫的响应[J]. 四川大学学报(工程科学版), 39(3): 83-90.
|
|
YU JIANG, YANG YUFENG, NIE XIANGPING, 2007. Response of seaweed Gracilaria lemaneiformis to cadmium stress[J]. Journal of Sichuan University (Engineering Science Edition), 39(3): 83-90. (in Chinese with English abstract)
|
[20] |
张永雨, 张继红, 梁彦韬, 等, 2017. 中国近海养殖环境碳汇形成过程与机制[J]. 中国科学: 地球科学, 47(12): 1414-1424.
|
|
ZHANG YONGYU, ZHANG JIHONG, LIANG YANTAO, et al, 2017. Carbon sequestration processes and mechanisms in coastal mariculture environments in China[J]. Science China: Earth Sciences, 60(12): 2097-2107.
doi: 10.1007/s11430-017-9148-7
|
[21] |
ARIMOTO A, NISHITSUJI K, NARISOKO H, et al, 2019. Differential gene expression in fronds and stolons of the siphonous macroalga, Caulerpa lentillifera[J]. Development, growth & differentiation, 61(9): 475-484.
|
[22] |
ATKIN O K, TJOELKER M G, 2003. Thermal acclimation and the dynamic response of plant respiration to temperature[J]. Trends in Plant Science, 8(7): 343-351.
pmid: 12878019
|
[23] |
BAMBARANDA B V A S M, TSUSAKA T W, CHIRAPART A, et al, 2019. Capacity of Caulerpa lentillifera in the removal of fish culture effluent in a recirculating aquaculture system[J]. Processes, 7(7): 440.
doi: 10.3390/pr7070440
|
[24] |
BRADFORD M M, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 72(1-2): 248-254.
doi: 10.1016/0003-2697(76)90527-3
|
[25] |
CAI YIXUN, LI GANG, ZOU DINGHUI, et al, 2021. Rising nutrient nitrogen reverses the impact of temperature on photosynthesis and respiration of a macroalga Caulerpa lentillifera (Ulvophyceae, Caulerpaceae)[J]. Journal of Applied Phycology, 33(2): 1115-1123.
doi: 10.1007/s10811-020-02340-9
|
[26] |
CHEN XIAOLIN, SUN YUHAO, LIU HONG, et al, 2019. Advances in cultivation, wastewater treatment application, bioactive components of Caulerpa lentillifera and their biotechnological applications[J]. PeerJ, 7: e6118.
doi: 10.7717/peerj.6118
|
[27] |
CONEVA V, CHITWOOD D H, 2015. Plant architecture without multicellularity: quandaries over patterning and the soma-germline divide in siphonous algae[J]. Frontiers in Plant Science, 6: 287.
doi: 10.3389/fpls.2015.00287
pmid: 25964794
|
[28] |
DAVISON I R, 1991. Environmental effects on algal photosynthesis: temperature[J]. Journal of Phycology, 27(1): 2-8.
doi: 10.1111/j.0022-3646.1991.00002.x
|
[29] |
DE GAILLANDE C, PAYRI C, REMOISSENET G, et al, 2017. Caulerpa consumption, nutritional value and farming in the Indo-Pacific region[J]. Journal of Applied Phycology, 29(5): 2249-2266.
doi: 10.1007/s10811-016-0912-6
|
[30] |
FUKUMOTO R, BORLONGAN I A, NISHIHARA G N, et al, 2018. Photosynthetic responses to photosynthetically active radiation and temperature including chilling-light stress on the heteromorphic life history stages of a brown alga, Cladosiphon okamuranus (Chordariaceae) from Ryukyu Islands, Japan[J]. Phycological Research, 66(3): 209-217.
doi: 10.1111/pre.12220
|
[31] |
GAO DAHAI, SUN ZHONGMIN, HUANG CHAOHUA, et al, 2020. First record of Caulerpa lentillifera J. Agardh (Bryopsidales, Chlorophyta) from China[J]. Marine Biology Research, 16(1): 44-49.
doi: 10.1080/17451000.2019.1702215
|
[32] |
GUO HUI, YAO JIANTING, SUN ZHONGMIN, et al, 2015a. Effect of temperature, irradiance on the growth of the green alga Caulerpa lentillifera (Bryopsidophyceae, Chlorophyta)[J]. Journal of Applied Phycology, 27(2): 879-885.
doi: 10.1007/s10811-014-0358-7
|
[33] |
GUO HUI, YAO JIANTING, SUN ZHONGMIN, et al, 2015b. Effects of salinity and nutrients on the growth and chlorophyll fluorescence of Caulerpa lentillifera[J]. Chinese Journal of Oceanology and Limnology, 33(2): 410-418.
doi: 10.1007/s00343-015-4105-y
|
[34] |
HAVAUX M, TARDY F, 1997. Thermostability and photostability of photosystem Ⅱ in leaves of the Chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes[J]. Plant Physiology, 113(3): 913-923.
doi: 10.1104/pp.113.3.913
|
[35] |
HUOVINEN P, MATOS J, PINTO I S, et al, 2006. The role of ammonium in photoprotection against high irradiance in the red alga Grateloupia lanceola[J]. Aquatic Botany, 84(4): 308-316.
doi: 10.1016/j.aquabot.2005.12.002
|
[36] |
IÑIGUEZ C, GALMÉS J, GORDILLO F J L, 2019. Rubisco carboxylation kinetics and inorganic carbon utilization in polar versus cold-temperate seaweeds[J]. Journal of Experimental Botany, 70(4): 1283-1297.
doi: 10.1093/jxb/ery443
pmid: 30576461
|
[37] |
KITAJIMA M, BUTLER W L, 1975. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 376(1): 105-115.
doi: 10.1016/0005-2728(75)90209-1
|
[38] |
LI GANG, QIN ZHEN, ZHANG JIEJUN, et al, 2020. Algal density mediates the photosynthetic responses of a marine macroalga Ulva conglobata (Chlorophyta) to temperature and pH changes[J]. Algal Research, 46: 101797.
doi: 10.1016/j.algal.2020.101797
|
[39] |
LIU CHUNXIANG, ZOU DINGHUI, 2015. Do increased temperature and CO2 levels affect the growth, photosynthesis, and respiration of the marine macroalga Pyropia haitanensis (Rhodophyta)? An experimental study[J]. Hydrobiologia, 745(1): 285-296.
doi: 10.1007/s10750-014-2113-0
|
[40] |
PAVASANT P, APIRATIKUL R, SUNGKHUM V, et al, 2006. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera[J]. Bioresource Technology, 97(18): 2321-2329.
doi: 10.1016/j.biortech.2005.10.032
|
[41] |
RANIELLO R, LORENTI M, BRUNET C, et al, 2004. Photosynthetic plasticity of an invasive variety of Caulerpa racemosa in a coastal Mediterranean area: light harvesting capacity and seasonal acclimation[J]. Marine Ecology Progress Series, 271: 113-120.
doi: 10.3354/meps271113
|
[42] |
STUTHMANN L E, SPRINGER K, KUNZMANN A, 2021. Cultured and packed sea grapes (Caulerpa lentillifera): effect of different irradiances on photosynthesis[J]. Journal of Applied Phycology, 33(2): 1125-1136.
doi: 10.1007/s10811-020-02322-x
|
[43] |
SUGAWARA T, GANESAN P, LI ZHUOSI, et al, 2014. Siphonaxanthin, a green algal carotenoid, as a novel functional compound[J]. Marine Drugs, 12(6): 3660-3668.
doi: 10.3390/md12063660
pmid: 24950294
|
[44] |
TALARICO L, MARANZANA G, 2000. Light and adaptive responses in red macroalgae: an overview[J]. Journal of Photochemistry and Photobiology B: Biology, 56(1): 1-11.
doi: 10.1016/S1011-1344(00)00046-4
|
[45] |
TERADA R, NAKASHIMA Y, BORLONGAN I A, et al, 2020. Photosynthetic activity including the thermal- and chilling-light sensitivities of a temperate Japanese brown alga Sargassum macrocarpum[J]. Phycological Research, 68(1): 70-79.
doi: 10.1111/pre.12398
|
[46] |
THOMSEN M S, MONDARDINI L, ALESTRA T, et al, 2019. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave[J]. Frontiers in Marine Science, 6: 84.
doi: 10.3389/fmars.2019.00084
|
[47] |
WEITZMAN B, KONAR B, IKEN K, et al, 2021. Changes in rocky intertidal community structure during a marine heatwave in the northern Gulf of Alaska[J]. Frontiers in Marine Science, 8: 556820.
doi: 10.3389/fmars.2021.556820
|
[48] |
WELLBURN A R, 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 144(3): 307-313.
doi: 10.1016/S0176-1617(11)81192-2
|
[49] |
YOUNG E B, BERGES J A, DRING M J, 2009. Physiological responses of intertidal marine brown algae to nitrogen deprivation and resupply of nitrate and ammonium[J]. Physiologia Plantarum, 135(4): 400-411.
doi: 10.1111/j.1399-3054.2008.01199.x
|
[50] |
ZOU DINGHUI, GAO KUNSHAN, 2013. Thermal acclimation of respiration and photosynthesis in the marine macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta)[J]. Journal of Phycology, 49(1): 61-68.
doi: 10.1111/jpy.12009
|
[51] |
ZOU DINGHUI, JI ZHIWEI, CHEN WEIZHOU, et al, 2018. High temperature stress might hamper the success of sexual reproduction in Hizikia fusiformis from Shantou, China: a photosynthetic perspective[J]. Phycologia, 57(4): 394-400.
doi: 10.2216/17-93R3
|