[1] |
雷新明, 黄晖, 黄良民, 2012. 珊瑚礁生态系统中珊瑚藻的生态作用研究进展[J]. 生态科学, 31 (5): 585-590.
|
|
LEI XINMING, HUANG HUI, HUANG LIANGMIN, 2012. Current state of ecological functions of coralline algae in coral reef ecosystem[J]. Ecological Science, 31(5): 585-590. (in Chinese with English abstract)
|
[2] |
雷新明, 黄晖, 练健生, 等, 2019. 中国珊瑚藻的多样性及分布研究现状[J]. 热带海洋学报, 38(4): 30-40.
doi: 10.11978/2018117
|
|
LEI XINMING, HUANG HUI, LIAN JIANSHENG, et al, 2019. The diversity and distribution of coralline algae in China: state of knowledge and research[J]. Journal of Tropical Oceanography, 38(4): 30-40. (in Chinese with English abstract)
doi: 10.11978/2018117
|
[3] |
李银强, 余克服, 王英辉, 等, 2016. 珊瑚藻在珊瑚礁发育过程中的作用[J]. 热带地理, 36(1): 19-26.
doi: 10.13284/j.cnki.rddl.002805
|
|
LI YINQIANG, YU KEFU, WANG YINGHUI, et al, 2016. Review on the coralline algae functions in the development process of coral reef[J]. Tropical Geography, 36(1): 19-26. (in Chinese with English abstract)
|
[4] |
聂磊, 谢子强, 彭丹, 2021. 海水酸化对珊瑚藻生长和钙化作用的影响[J]. 广东海洋大学学报, 41(3): 67-73.
|
|
NIE LEI, XIE ZIQIANG, PENG DAN, 2021. Impact of seawater acidification on growth and calcification characteristics of coralline algae[J]. Journal of Guangdong Ocean University, 41(3): 67-73. (in Chinese with English abstract)
|
[5] |
徐智广, 李美真, 霍传林, 等, 2012. 高浓度CO2引起的海水酸化对小珊瑚藻光合作用和钙化作用的影响[J]. 生态学报, 32(3): 699-705.
|
|
XU ZHIGUANG, LI MEIZHEN, HUO CHUANLIN, et al, 2012. Effects of CO2-induced seawater acidification on photosynthesis and calcification in the coralline alga Corallina pilulifera[J]. Acta Ecologica Sinica, 32(3): 699-705. (in Chinese with English abstract)
doi: 10.5846/stxb
|
[6] |
ANTHONY K R N, KLINE D I, DIAZ-PULIDO G, et al, 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(45): 17442-17446.
doi: 10.1073/pnas.0804478105
pmid: 18988740
|
[7] |
BERGSTROM E, ORDOÑEZ A, HO M, et al, 2020. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming[J]. Marine Environmental Research, 161: 105107.
doi: 10.1016/j.marenvres.2020.105107
|
[8] |
CAMPBELL J E, FISCH J, LANGDON C, et al, 2016. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp. )[J]. Coral Reefs, 35: 357-368.
doi: 10.1007/s00338-015-1377-9
|
[9] |
CHAN P T W, HALFAR J, ADEY W H, 2020. Recent density decline in wild-collected subarctic crustose coralline algae reveals climate change signature[J]. Geology, 48(3): 226-230.
doi: 10.1130/G46804.1
|
[10] |
COMEAU S, CARPENTER R C, EDMUNDS P J, 2014. Effects of irradiance on the response of the coral Acropora pulchra and the calcifying alga Hydrolithon reinboldii to temperature elevation and ocean acidification[J]. Journal of Experimental Marine Biology and Ecology, 453: 28-35.
doi: 10.1016/j.jembe.2013.12.013
|
[11] |
CORNWALL C E, BOYD P W, MCGRAW C M, et al, 2014. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa[J]. PLoS One, 9(9): e97235.
doi: 10.1371/journal.pone.0097235
|
[12] |
CORNWALL C E, DIAZ-PULIDO G, COMEAU S, 2019. Impacts of ocean warming on coralline algal calcification: meta-analysis, knowledge gaps, and key recommendations for future research[J]. Frontiers in Marine Science, 6: 186.
doi: 10.3389/fmars.2019.00186
|
[13] |
CORNWALL C E, HARVEY B P, COMEAU S, et al, 2022. Understanding coralline algal responses to ocean acidification: Meta-analysis and synthesis[J]. Global Change Biology, 28(2): 362-374.
doi: 10.1111/gcb.v28.2
|
[14] |
CORONADO I, FINE M, BOSELLINI F R, et al, 2019. Impact of ocean acidification on crystallographic vital effect of the coral skeleton[J]. Nature Communications, 10(1): 2896.
doi: 10.1038/s41467-019-10833-6
pmid: 31263108
|
[15] |
DAVIES P S, 1989. Short-term growth measurements of corals using an accurate buoyant weighing technique[J]. Marine Biology, 101(3): 389-395.
doi: 10.1007/BF00428135
|
[16] |
DIAZ-PULIDO G, ANTHONY K R N, KLINE D I, et al, 2012. Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae[J]. Journal of Phycology, 48(1): 32-39.
doi: 10.1111/jpy.2012.48.issue-1
|
[17] |
DOVE S G, BROWN K T, VAN DEN HEUVEL A, et al, 2020. Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline[J]. Communications Earth & Environment, 1(1): 55.
|
[18] |
EYRE B D, ANDERSSON A J, CYRONAK T, 2014. Benthic coral reef calcium carbonate dissolution in an acidifying ocean[J]. Nature Climate Change, 4(11): 969-976.
doi: 10.1038/nclimate2380
|
[19] |
FINDLAY H S, WOOD H L, KENDALL M A, et al, 2011. Comparing the impact of high CO2on calcium carbonate structures in different marine organisms[J]. Marine Biology Research, 7(6): 565-575.
doi: 10.1080/17451000.2010.547200
|
[20] |
FOSTER T, GILMOUR J P, 2016. Seeing red: coral larvae are attracted to healthy-looking reefs[J]. Marine Ecology Progress Series, 559: 65-71.
doi: 10.3354/meps11902
|
[21] |
GAO KUNSHAN, ZHENG YANGQIAO, 2010. Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta)[J]. Global Change Biology, 16(8): 2388-2398.
doi: 10.1111/gcb.2010.16.issue-8
|
[22] |
GOREAU T J F, HAYES R L, 2021. Global warming triggers coral reef bleaching tipping point: this article belongs to Ambio's 50th anniversary collection. Theme: climate change impacts[J]. Ambio, 50(6): 1137-1140.
doi: 10.1007/s13280-021-01512-2
|
[23] |
HOFMANN L C, YILDIZ G, HANELT D, et al, 2012. Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels[J]. Marine Biology, 159(4): 783-792.
doi: 10.1007/s00227-011-1854-9
|
[24] |
HUGGETT M J, MCMAHON K, BERNASCONI R, 2018. Future warming and acidification result in multiple ecological impacts to a temperate coralline alga[J]. Environmental Microbiology, 20(8): 2769-2782.
doi: 10.1111/1462-2920.14113
pmid: 29575500
|
[25] |
IPCC, 2014. Climate change 2013: the physical science basis: working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press.
|
[26] |
JIANG LEI, SUN YOUFANG, ZHANG YUYANG, et al, 2017. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis[J]. Biogeosciences, 14(24): 5741-5752.
doi: 10.5194/bg-14-5741-2017
|
[27] |
JOHNSON M D, CARPENTER R C, 2012. Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing[J]. Journal of Experimental Marine Biology and Ecology, 434-435: 94-101.
|
[28] |
JOHNSON M D, MORIARTY V W, CARPENTER R C, 2014. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2[J]. PLoS One, 9(2): e87678.
doi: 10.1371/journal.pone.0087678
|
[29] |
JOHNSON M D, COMEAU S, LANTZ C A, et al, 2017. Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages[J]. Coral Reefs, 36(4): 1059-1070.
doi: 10.1007/s00338-017-1597-2
|
[30] |
JOHNSON M D, CARPENTER R C, 2018. Nitrogen enrichment offsets direct negative effects of ocean acidification on a reef-building crustose coralline alga[J]. Biology Letters, 14(7): 20180371.
doi: 10.1098/rsbl.2018.0371
|
[31] |
KAMENOS N A, 2010. North Atlantic summers have warmed more than winters since 1353, and the response of marine zooplankton[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(52): 22442-22447.
doi: 10.1073/pnas.1006141107
pmid: 21148422
|
[32] |
KAMENOS N A, BURDETT H L, ALOISIO E, et al, 2013. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification[J]. Global Change Biology, 19(12): 3621-3628.
doi: 10.1111/gcb.12351
pmid: 23943376
|
[33] |
KIM J H, KIM N, MOON H, et al, 2020. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae[J]. Marine Pollution Bulletin, 157: 111324.
doi: 10.1016/j.marpolbul.2020.111324
|
[34] |
LATHAM H, 2008. Temperature stress-induced bleaching of the coralline alga Corallina officinalis: a role for the enzyme bromoperoxidase[J]. Bioscience Horizons: The International Journal of Student Research, 2(1): 104-113.
|
[35] |
LEI XINMING, JIANG LEI, ZHANG YUYANG, et al, 2020. Response of coralline algae Porolithon onkodes to elevated seawater temperature and reduced pH[J]. Acta Oceanologica Sinica, 39(2): 132-137.
doi: 10.1007/s13131-020-1548-6
|
[36] |
LICHTENTHALER H K, 1987. Chlorophylls and carotenoids pigments of photosynthetic biomembranes.[J]. Methods in Enzymology, 148: 350-382.
|
[37] |
MANNING J C, CARPENTER R C, MIRANDA E A, 2019. Ocean acidification reduces net calcification and wound healing in the tropical crustose coralline alga, Porolithon onkodes (Corallinales, Rhodophyta)[J]. Journal of Experimental Marine Biology and Ecology, 520: 151225.
doi: 10.1016/j.jembe.2019.151225
|
[38] |
MARTIN S, GATTUSO J P, 2009. Response of Mediterranean coralline algae to ocean acidification and elevated temperature[J]. Global Change Biology, 15(8): 2089-2100.
doi: 10.1111/gcb.2009.15.issue-8
|
[39] |
MARTIN S, COHU S, VIGNOT C, et al, 2013. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature[J]. Ecology and Evolution, 3(3): 676-693.
doi: 10.1002/ece3.2013.3.issue-3
|
[40] |
MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al, 2021. Climate Change 2021: contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press.
|
[41] |
MCCORMACK S, 2014. Ocean acidification, rather than elevated temperature, causes reduced growth and calcification in the geniculate coralline algae, Amphiroa anceps[D]. New South Wales: University of New South Wales: 1-57.
|
[42] |
MCCOY S J, RAGAZZOLA F, 2014. Skeletal trade-offs in coralline algae in response to ocean acidification[J]. Nature Climate Change, 4(8): 719-723.
doi: 10.1038/nclimate2273
|
[43] |
MCNICHOLL C, KOCH M S, SWARZENSKI P W, et al, 2020. Ocean acidification effects on calcification and dissolution in tropical reef macroalgae[J]. Coral Reefs, 39(6): 1635-1647.
doi: 10.1007/s00338-020-01991-x
|
[44] |
MUÑOZ P T, SÁEZ C A, MARTÍNEZ-CALLEJAS M B, 2018. Short-term interactive effects of increased temperatures and acidification on the calcifying macroalgae Lithothamnion crispatum and Sonderophycus capensis[J]. Aquatic Botany, 148: 46-52.
doi: 10.1016/j.aquabot.2018.04.008
|
[45] |
QUI-MINET Z N, COUDRET J, DAVOULT D, et al, 2019. Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species[J]. Ecology and Evolution, 9(24): 13787-13807.
doi: 10.1002/ece3.v9.24
|
[46] |
SCHUBERT N, SALAZAR V W, RICH W A, et al, 2019. Rhodolith primary and carbonate production in a changing ocean: the interplay of warming and nutrients[J]. Science of the Total Environment, 676: 455-468.
doi: 10.1016/j.scitotenv.2019.04.280
|
[47] |
SINUTOK S, HILL R, DOBLIN M A, et al, 2012. Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming[J]. Coral Reefs, 31(4): 1201-1213.
doi: 10.1007/s00338-012-0952-6
|
[48] |
SISSINI M N, KOERICH G, DE BARROS-BARRETO M B, et al, 2022. Diversity, distribution, and environmental drivers of coralline red algae: the major reef builders in the Southwestern Atlantic[J]. Coral Reefs, 41(3): 711-725, doi: 10.1007/s00338-021-02171-1.
doi: 10.1007/s00338-021-02171-1
|
[49] |
SORDO L, SANTOS R, BARROTE I, et al, 2018. High CO2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum[J]. Ecology and Evolution, 8(10): 4781-4792.
doi: 10.1002/ece3.2018.8.issue-10
|
[50] |
SORDO L, SANTOS R, BARROTE I, et al, 2019. Temperature amplifies the effect of high CO2 on the photosynthesis, respiration, and calcification of the coralline algae Phymatolithon lusitanicum[J]. Ecology and Evolution, 9(19): 11000-11009.
doi: 10.1002/ece3.v9.19
|
[51] |
TAMBUTTÉ E, VENN A A, HOLCOMB M, et al, 2015. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification[J]. Nature Communications, 6: 7368.
doi: 10.1038/ncomms8368
pmid: 26067341
|
[52] |
TANAKA Y, SUZUKI A, SAKAI K, 2017. Effects of elevated seawater temperature and phosphate enrichment on the crustose coralline alga Porolithon onkodes (Rhodophyta)[J]. Phycological Research, 65(1): 51-57.
doi: 10.1111/pre.2017.65.issue-1
|
[53] |
WEBSTER N S, UTHICKE S, BOTTÉ E S, et al, 2013. Ocean acidification reduces induction of coral settlement by crustose coralline algae[J]. Global Change Biology, 19(1): 303-315.
doi: 10.1111/gcb.12008
pmid: 23504741
|
[54] |
WEISS A, MARTINDALE R C, 2017. Crustose coralline algae increased framework and diversity on ancient coral reefs[J]. PLoS One, 12(8): e0181637.
doi: 10.1371/journal.pone.0181637
|
[55] |
WILLIAMS B, CHAN P T W, WESTFIELD I T, et al, 2021. Ocean acidification reduces skeletal density of hardground-forming high-latitude crustose coralline algae[J]. Geophysical Research Letters, 48(5): e2020GL091499, doi: 10.1029/2020GL091499.
doi: 10.1029/2020GL091499
|
[56] |
YANG FANGFANG, MO JIAHAO, WEI ZHANGLIANG, et al, 2021a. Calcified macroalgae and their bacterial community in relation to larval settlement and metamorphosis of reef-building coral Pocillopora damicornis[J]. FEMS Microbiology Ecology, 97(1): fiaa215.
doi: 10.1093/femsec/fiaa215
|
[57] |
YANG FANGFANG, WEI ZHANGLIANG, LONG LIJUAN. 2021b. Transcriptomic and physiological responses of the tropical reef calcified macroalga Amphiroa fragilissima to elevated temperature[J]. Journal of Phycology, 57(4): 1254-1265.
doi: 10.1111/jpy.v57.4
|