[1] |
国家海洋信息中心, 2022. 中国气候变化海洋蓝皮书(2021)[M]. 北京: 科学出版社.
|
|
NATIONAL MARINE DATA INFORMATION CENTER, 2022. Blue book on marine climate change in China 2021[M]. Beijing: Science Press. (in Chinese)
|
[2] |
郭亚娟, 周伟华, 袁翔城, 等, 2018. 两种造礁石珊瑚对海水酸化和溶解有机碳加富的响应[J]. 热带海洋学报, 37(1): 57-63.
doi: 10.11978/2017018
|
|
GUO YAJUAN, ZHOU WEIHUA, YUAN XIANGCHENG, et al, 2018. Responses of two species of reef-building corals to acidification and dissolved organic carbon enrichment[J]. Journal of Tropical Oceanography, 37(1): 57-63. (in Chinese with English abstract)
|
[3] |
焦尚, 霸婉玉, 2017. 动物海产品中粗脂肪测定方法的研究[J]. 现代盐化工, 44(2): 28-29, 31.
|
|
JIAO SHANG, BA WANYU, 2017. Study on the determination of crude fat in animal seafood[J]. Modern Salt and Chemical Industry, 44(2): 28-29, 31. (in Chinese with English abstract)
|
[4] |
梁宇娴, 俞晓磊, 郭亚娟, 等, 2020. 3种传统方法对不同珊瑚表面积测量的适用性及其校准方法—以3D扫描技术为基准[J]. 热带海洋学报, 39(1): 85-93.
doi: 10.11978/2019039
|
|
LIANG YUXIAN, YU XIAOLEI, GUO YAJUAN, et al, 2020. Applicability and calibration methods of three traditional surface area measurement methods for different coral species — based on 3D scanning technology[J]. Journal of Tropical Oceanography, 39(1): 85-93. (in Chinese with English abstract)
doi: 10.11978/2019039
|
[5] |
亚力士, 2018. 三亚湾近岸海域及其珊瑚生长区重金属污染现状与评价[D]. 南宁: 广西大学: 1-73.
|
|
ALEK P, 2018. The pollution status and assessment of heavy metals in the coaster water of Sanya bay and its coral growing region[D]. Nanning: Guangxi University: 1-73. (in Chinese with English abstract)
|
[6] |
俞晓磊, 江雷, 罗勇, 等, 2019. 异养营养对丛生盔形珊瑚代谢及共生藻光合生理的影响[J]. 海洋科学, 43(12): 81-88.
|
|
YU XIAOLEI, JIANG LEI, LUO YONG, et al, 2019. Effects of heterotrophy on the metabolism and symbiont photosynthetic physiology of Galaxea fascicularis[J]. Marine Sciences, 43(12): 81-88. (in Chinese with English abstract)
|
[7] |
ABRAMOVITCH-GOTTLIB L, KATOSHEVSKI D, VAGO R, 2002. A computerized tank system for studying the effect of temperature on calcification of reef organisms[J]. Journal of Biochemical and Biophysical Methods, 50(2-3): 245-252.
doi: 10.1016/S0165-022X(01)00236-6
|
[8] |
AGOSTINI S, FUJIMURA H, HIGUCHI T, et al, 2013. The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis[J]. Comptes Rendus Biologies, 336(8): 384-391.
doi: 10.1016/j.crvi.2013.07.003
|
[9] |
AL-HORANI F A, 2005. Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors[J]. Scientia Marina, 69(3): 347-354.
doi: 10.3989/scimar.2005.69n3347
|
[10] |
ALLEMAND D, TAMBUTTÉ É, ZOCCOLA D, et al, 2011. Coral calcification, cells to reefs[M]//DUBINSKY Z, STAMBLER N. Coral reefs: an ecosystem in transition. Dordrecht: Springer: 119-150.
|
[11] |
BRAHMI C, MEIBOM A, SMITH D C, et al, 2010. Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophyllia regia[J]. Coral Reefs, 29(1): 175-189.
doi: 10.1007/s00338-009-0557-x
|
[12] |
BRÜCK T B, BRÜCK W M, SANTIAGO-VÁZQUEZ L Z, et al, 2007. Diversity of the bacterial communities associated with the azooxanthellate deep water octocorals Leptogorgia minimata, Iciligorgia schrammi, and Swiftia exertia[J]. Marine Biotechnology, 9(5): 561-576.
doi: 10.1007/s10126-007-9009-1
|
[13] |
CAI RONGSHUO, TAN HONGJIAN, KONTOYIANNIS H, 2017. Robust surface warming in offshore China seas and its relationship to the East Asian monsoon wind field and ocean forcing on interdecadal time scales[J]. Journal of Climate, 30(22): 8987-9005.
doi: 10.1175/JCLI-D-16-0016.1
|
[14] |
CAIRNS S D, 1999. Stratigraphic distribution of Neogene Caribbean azooxanthellae Corals (Scleractinia and Stylasteridae)[M]//COLLINS L S, COATES A G. A paleobiotic survey of caribbean faunas from the neogene of the isthmus of panama. Allen Press: 357.
|
[15] |
CAIRNS S D, 1999. “Stratigraphic Distribution of Neogene Caribbean Azooxanthellae Corals (Scleractinia and Stylasteridae).” in A Paleobiotic Survey of Caribbean Faunas From the Neogene of the Isthmus of Panama[M]//COLLINS L S, COATES A G. Bulletins of American Paleontology. Allen Press: 109-118.
|
[16] |
CAIRNS S D, 2000. A revision of the shallow-water azooxanthellate scleractinia of the western Atlantic[J]. Studies on the Fauna of Curacao and other Caribbean Islands, 75(1): 1-240.
|
[17] |
CAROSELLI E, MATTIOLI G, LEVY O, et al, 2012a. Inferred calcification rate of a Mediterranean azooxanthellate coral is uncoupled with sea surface temperature along an 8° latitudinal gradient[J]. Frontiers in Zoology, 9(1): 32.
doi: 10.1186/1742-9994-9-32
|
[18] |
CAROSELLI E, ZACCANTI F, MATTIOLI G, et al, 2012b. Growth and demography of the solitary scleractinian Coral Leptopsammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea[J]. PLoS One, 7(6): e37848
doi: 10.1371/journal.pone.0037848
|
[19] |
CAROSELLI E, NANNI V, LEVY O, et al, 2015. Latitudinal variations in biometry and population density of a Mediterranean solitary coral[J]. Limnology and Oceanography, 60(4): 1356-1370.
doi: 10.1002/lno.10100
|
[20] |
CAROSELLI E, BRAMBILLA V, RICCI F, et al, 2016. Inferred calcification rate of a temperate azooxanthellate caryophylliid coral along a wide latitudinal gradient[J]. Coral Reefs, 35(3): 919-928.
doi: 10.1007/s00338-016-1422-3
|
[21] |
CASTILLO K D, HELMUTH B S T, 2005. Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure[J]. Marine Biology, 148(2): 261-270.
doi: 10.1007/s00227-005-0046-x
|
[22] |
CASTILLO K D, RIES J B, BRUNO J F, et al, 2014. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming[J]. Proceedings of the Royal Society B: Biological Sciences, 281(1797): 20141856.
doi: 10.1098/rspb.2014.1856
|
[23] |
CHENG LIJING, TRENBERTH K E, FASULLO J, et al, 2017. Improved estimates of ocean heat content from 1960 to 2015[J]. Science Advances, 3(3): e1601545.
doi: 10.1126/sciadv.1601545
|
[24] |
DAVIES P S, 1989. Short-term growth measurements of corals using an accurate buoyant weighing technique[J]. Marine Biology, 101(3): 389-395.
doi: 10.1007/BF00428135
|
[25] |
DE BARROS MARANGONI L F, MARQUES J A, DUARTE G A S, et al, 2017. Copper effects on biomarkers associated with photosynthesis, oxidative status and calcification in the Brazilian coral Mussismilia harttii (Scleractinia, Mussidae)[J]. Marine Environmental Research, 130: 248-257.
doi: 10.1016/j.marenvres.2017.08.002
|
[26] |
EDMUNDS P J, 2005. Effect of elevated temperature on aerobic respiration of coral recruits[J]. Marine Biology, 146(4): 655-663.
doi: 10.1007/s00227-004-1485-5
|
[27] |
FITT W K, BROWN B E, WARNER M E, et al, 2001. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals[J]. Coral Reefs, 20(1): 51-65.
doi: 10.1007/s003380100146
|
[28] |
GIZZI F, DE MAS L, AIRI V, et al, 2017. Reproduction of an azooxanthellate coral is unaffected by ocean acidification[J]. Scientific Reports, 7(1): 13049.
doi: 10.1038/s41598-017-13393-1
pmid: 29026138
|
[29] |
GOFFREDO S, CAROSELLI E, PIGNOTTI E, et al, 2007. Variation in biometry and population density of solitary corals with solar radiation and sea surface temperature in the Mediterranean Sea[J]. Marine Biology, 152(2): 351-361.
doi: 10.1007/s00227-007-0695-z
|
[30] |
HOEKSEMA B W, HIEMSTRA A F, VERMEIJ M J A, 2019. The rise of a native sun coral species on southern Caribbean coral reefs[J]. Ecosphere, 10(11): e02942.
|
[31] |
HOULBRÈQUE F, TAMBUTTÉ E, FERRIER-PAGÈS C, 2003. Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata[J]. Journal of Experimental Marine Biology and Ecology, 296(2): 145-166.
doi: 10.1016/S0022-0981(03)00259-4
|
[32] |
HOULBRÈQUE F, FERRIER-PAGÈS C, 2009. Heterotrophy in tropical scleractinian corals[J]. Biological Reviews, 84(1): 1-17.
doi: 10.1111/j.1469-185X.2008.00058.x
|
[33] |
HOWE S A, MARSHALL A T, 2001. Thermal compensation of metabolism in the temperate coral, Plesiastrea versipora (Lamarck, 1816)[J]. Journal of Experimental Marine Biology and Ecology, 259(2): 231-248.
doi: 10.1016/S0022-0981(01)00230-1
|
[34] |
HUANG YANLENG, MAYFIELD A B, FAN T Y, 2020. Effects of feeding on the physiological performance of the stony coral Pocillopora acuta[J]. Scientific Reports, 10(1): 19988.
doi: 10.1038/s41598-020-76451-1
|
[35] |
IMBS A B, LATYSHEV N A, DAUTOVA T N, et al, 2010. Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae[J]. Marine Ecology Progress Series, 409: 65-75.
doi: 10.3354/meps08622
|
[36] |
INOUE M, SHINMEN K, KAWAHATA H, et al, 2012. Estimate of calcification responses to thermal and freshening stresses based on culture experiments with symbiotic and aposymbiotic primary polyps of a coral, Acropora digitifera[J]. Global and Planetary Change, 92-93: 1-7.
|
[37] |
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, 2019. Special report on the ocean and cryosphere in a changing climate[R]. Geneva: IPCC.
|
[38] |
JIANG JIAOYUN, WANG AOQI, DENG XIANGZI, et al, 2021. How Symbiodiniaceae meets the challenges of life during coral bleaching[J]. Coral Reefs, 40(4): 1339-1353.
doi: 10.1007/s00338-021-02115-9
|
[39] |
KLEYPAS J A, DANABASOGLU G, LOUGH J M, 2008. Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events[J]. Geophysical Research Letters, 35(3): L03613.
|
[40] |
KORNDER N A, RIEGL B M, FIGUEIREDO J, 2018. Thresholds and drivers of coral calcification responses to climate change[J]. Global Change Biology, 24(11): 5084-5095.
doi: 10.1111/gcb.14431
pmid: 30152194
|
[41] |
KUFFNER I B, LIDZ B H, HUDSON J H, et al, 2015. A century of ocean warming on florida keys coral reefs: historic in situ observations[J]. Estuaries and Coasts, 38(3): 1085-1096.
doi: 10.1007/s12237-014-9875-5
|
[42] |
LESSER M P, 2004. Experimental biology of coral reef ecosystems[J]. Journal of Experimental Marine Biology and Ecology, 300(1-2): 217-252.
doi: 10.1016/j.jembe.2003.12.027
|
[43] |
LIAO BAOLIN, WANG JUNJIE, XIAO BAOHUA, et al, 2021. Effects of acute microplastic exposure on physiological parameters in Tubastrea aurea corals[J]. Marine Pollution Bulletin, 165: 112173.
doi: 10.1016/j.marpolbul.2021.112173
|
[44] |
MEIBOM A, CUIF J P, HILLION F, et al, 2004. Distribution of magnesium in coral skeleton[J]. Geophysical Research Letters, 31(23): L23306.
|
[45] |
MONDAL T, RAGHUNATHAN C, VENKATARAMAN K, 2017. First report of four species of azooxanthellate scleractinian corals in Indian waters from Andaman and Nicobar Islands[J]. Indian Journal of Geo-Marine Sciences, 46(8): 1627-1631.
|
[46] |
PIERANGELINI M, THIRY M, CARDOL P, 2020. Different levels of energetic coupling between photosynthesis and respiration do not determine the occurrence of adaptive responses of Symbiodiniaceae to global warming[J]. New Phytologist, 228(3): 855-868.
doi: 10.1111/nph.16738
|
[47] |
PRAZERES M, UTHICKE S, PANDOLFI J M, 2015. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera[J]. Proceedings of the Royal Society B: Biological Sciences, 282(1803): 20142782.
doi: 10.1098/rspb.2014.2782
|
[48] |
RODRIGUES L J, GROTTOLI A G, 2007. Energy reserves and metabolism as indicators of coral recovery from bleaching[J]. Limnology and Oceanography, 52(5): 1874-1882.
doi: 10.4319/lo.2007.52.5.1874
|
[49] |
SMITH D J, SUGGETT D J, BAKER N R, 2005. Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals?[J]. Global Change Biology, 11(1): 1-11.
doi: 10.1111/j.1529-8817.2003.00895.x
|
[50] |
SOLOMON S, MANNING M, MARQUIS M, et al, 2007. Climate change 2007 - the physical science basis: Working group Ⅰ contribution to the fourth assessment report of the IPCC[M]. Cambridge university press.
|
[51] |
SPENCER T, TELEKI K A, BRADSHAW C, et al, 2000. Coral bleaching in the southern Seychelles during the 1997-1998 Indian Ocean warm event[J]. Marine Pollution Bulletin, 40(7): 569-586.
doi: 10.1016/S0025-326X(00)00026-6
|
[52] |
TCHERNOV D, GORBUNOV M Y, DE VARGAS C, et al, 2004. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals[J]. Proceedings of the National Academy of Sciences of the United States of America, 101(37): 13531-13535.
pmid: 15340154
|
[53] |
TITLYANOV E A, TITLYANOVA T V, YAMAZATO K, et al, 2001. Photo-acclimation of the hermatypic coral Stylophora pistillata while subjected to either starvation or food provisioning[J]. Journal of Experimental Marine Biology and Ecology, 257(2): 163-181.
doi: 10.1016/S0022-0981(00)00308-7
|
[54] |
WILLMER P, 2002. Biochemical adaptation-Mechanism and process in physiological evolution[J]. Science, 296: 473.
|
[55] |
YAMASHIRO H, OKU H, ONAGA K, 2005. Effect of bleaching on lipid content and composition of Okinawan corals[J]. Fisheries Science, 71(2): 448-453.
doi: 10.1111/j.1444-2906.2005.00983.x
|
[56] |
ZEBRAL Y D, DA SILVA FONSECA J, MARQUES J A, et al, 2019. Carbonic Anhydrase as a biomarker of global and local impacts: insights from calcifying animals[J]. International Journal of Molecular Sciences, 20(12): 3092.
doi: 10.3390/ijms20123092
|