[1] |
蔡逸洵, 温嘉怡, 邹定辉, 2021. 干出状态下坛紫菜叶状体表面水膜与失水对光合作用光化学特性的影响[J]. 热带海洋学报, 40(1): 82-90.
|
|
CAI YIXUN, WEN JIAYI, ZOU DINGHUI, 2021. Effects of surface water film and desiccation on chlorophyll fluorescence characteristics of emersed Pyropia haitanensis thalli[J]. Journal of Tropical Oceanography, 40(1): 82-90. (in Chinese with English abstract)
|
[2] |
程丽巍, 邹定辉, 郑青松, 等, 2010. 光照和温度对氮饥饿及饱和营养条件下石莼(Ulva lactuca)的硝态氮吸收动力学影响[J]. 生态学杂志, 29(5): 939-944.
|
|
CHENG LIWEI, ZOU DINGHUI, ZHENG QINGSONG, et al, 2010. Effects of temperature and light intensity on the nitrate uptake kinetics of nitrogen starved and replete Ulva lactuca[J]. Chinese Journal of Ecology, 29(5): 939-944. (in Chinese with English abstract)
|
[3] |
丁兰平, 黄冰心, 谢艳齐, 2011. 中国大型海藻的研究现状及其存在的问题[J]. 生物多样性, 19(6): 798-804.
doi: 10.3724/SP.J.1003.2011.07128
|
|
DING LANPING, HUANG BINGXIN, XIE YANQI, 2011. Advances and problems with the study of marine macroalgae of China Seas[J]. Biodiversity Science 19(6): 798-804. (in Chinese with English abstract)
doi: 10.3724/SP.J.1003.2011.07128
|
[4] |
高坤山, 2014. 藻类固碳--理论、进展与方法[M]. 北京: 科学出版社: 1-491.
|
|
GAO KUNSHAN, 2014. Algal carbon fixation-basis, advances and methods[M]. Beijing: Science Press: 1-491. (in Chinese)
|
[5] |
黄道建, 黄小平, 岳维忠, 2005. 大型海藻体内TN和TP含量及其对近海环境修复的意义[J]. 台湾海峡, 24(3): 316-321.
|
|
HUANG DAOJIAN, HUANG XIAOPING, YUE WEIZHONG, 2005. Contents of TN, TP in macroalgae and its significance for remediation of coastal environment[J]. Journal of Oceanography in Taiwan Strait, 24(3): 316-321. (in Chinese with English abstract)
|
[6] |
李刚, 2009. 中国南海浮游植物光合固碳与阳光紫外辐射关系的研究[D]. 汕头: 汕头大学: 1-171.
|
|
LI GANG, 2009. Studies on the relationships of solar ultraviolet radiation (UVR) and photosynthetic carbon fixation by phytoplankton assemblages from the South China Sea[D]. Shantou: Shantou University: 1-171. (in Chinese with English abstract)
|
[7] |
龙超, 罗肇河, 韦章良, 等, 2021. 海南三亚鹿回头虫黄藻(Effrenium voratum)的形态学和系统发育学研究[J]. 热带海洋学报, 40(4): 35-43.
|
|
LONG CHAO, LUO ZHAOHE, WEI ZHANGLIANG, et al, 2021. Morphology and phylogeny of zooxanthellae Effrenium voratum from Luhuitou reef in Sanya, Hainan province[J]. Journal of Tropical Oceanography, 40(4): 35-43. (in Chinese with English abstract)
|
[8] |
钱树本, 2014. 海藻学[M]. 青岛: 中国海洋大学出版社: 1-822.
|
|
QIAN SHUBEN, 2014. Marine phycology[M]. Qingdao: China Ocean University Press: 1-822. (in Chinese)
|
[9] |
沈乃澂, 2013. 南海诸岛的面积测量(续)[J]. 中国计量, (11): 62-64.
|
|
SHEN NAICHENG, 2013. Area survey of the South China Sea Islands[J]. China Metrology, (11): 62-64. (in Chinese)
|
[10] |
吴超元, 张京浦, 温宗存, 等, 1996. 青岛三种海产红藻的光合和呼吸特性的初步研究[J]. 海洋与湖沼, 27(2): 207-212.
|
|
WU CHAOYUAN, ZHANG JINGPU, WEN ZONGCUN, et al, 1996. A study on the photosynthetic and respiratory properties of three red seaweeds in Qingdao[J]. Oceanologia et Limnologia Sinica, 27(2): 207-212. (in Chinese with English abstract)
|
[11] |
杨宇峰, 2016. 近海环境生态修复与大型海藻资源利用[M]. 北京: 科学出版社: 1-364.
|
|
YANG YUFENG, 2016. Coastal environment bioremediation and seaweed resource utilization[M]. Beijing: Science Press: 1-364. (in Chinese)
|
[12] |
杨雨玲, 李伟, 陈伟洲, 等, 2013. 不同温度及二氧化碳浓度下培养的龙须菜光合生理特性对阳光紫外辐射的响应[J]. 生态学报, 33(18): 5538-5545.
doi: 10.5846/stxb201305080989
|
|
YANG YULING, LI WEI, CHEN WEIZHOU, et al, 2013. Photosynthetic responses to solar UV radiation of Gracilaria lemaneiformis cultured under different temperatures and CO2 concentrations[J]. Acta Ecologica Sinica, 33(18): 5538-5545. (in Chinese with English abstract)
doi: 10.5846/stxb201305080989
|
[13] |
章守宇, 向晨, 周曦杰, 等, 2018. 枸杞岛海藻场6种大型海藻光合荧光特性比较[J]. 应用生态学报, 29(10): 3441-3448.
|
|
ZHANG SHOUYU, XIANG CHEN, ZHOU XIJIE, et al, 2018. Photosynthetic fluorescence characteristics of six macroalgae species in seaweed beds of Gouqi Island, Zhejiang, China[J]. Chinese Journal of Applied Ecology, 29(10): 3441-3448. (in Chinese with English abstract)
|
[14] |
周百成, 郑舜琴, 曾呈奎, 1974. 几种绿藻、褐藻和红藻的吸收光谱的比较研究[J]. 植物学报, 16(2): 146-155.
|
|
ZHOU BAICHENG, ZHENG SHUNQIN, ZENG CHENGKUEI, 1974. Comparative studies on the absorption spectra of some green, brown and red algae[J]. Acta Botanica Sinica, 16(2): 146-155. (in Chinese with English abstract)
|
[15] |
BADGER M R, ANDREWS T J, WHITNEY S M, et al, 1998. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae[J]. Canadian Journal of Botany, 76: 1052-1071.
doi: 10.1139/b98-074
|
[16] |
BEER S, ESHEL A, 1985. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae[J]. Australian Journal of Marine and Freshwater Research, 36(6): 785-792.
doi: 10.1071/MF9850785
|
[17] |
CAI YIXUN, LI GANG, ZOU DINGHUI, et al, 2021. Rising nutrient nitrogen reverses the impact of temperature on photosynthesis and respiration of a macroalga Caulerpa lentillifera (Ulvophyceae, Caulerpaceae)[J]. Journal of Applied Phycology, 33(2): 1115-1123.
doi: 10.1007/s10811-020-02340-9
|
[18] |
DUARTE L, VIEJO R M, MARTÍNEZ B, et al, 2013. Recent and historical range shifts of two canopy-forming seaweeds in North Spain and the link with trends in sea surface temperature[J]. Acta Oecologica, 51: 1-10.
doi: 10.1016/j.actao.2013.05.002
|
[19] |
ESTEBAN R, MARTÍNEZ B, FERNÁNDEZ-MARÍN B, et al, 2009. Carotenoid composition in Rhodophyta: insights into xanthophyll regulation in Corallina elongata[J]. European Journal of Phycology, 44(2): 221-230.
doi: 10.1080/09670260802439109
|
[20] |
HENLEY W J, 1993. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes[J]. Journal of Phycology 29( 5): 729-739.
|
[21] |
HUGHES D J, CAMPBELL D A, DOBLIN M A, et al, 2018. Roadmaps and detours: active Chlorophyll-a assessments of primary productivity across marine and freshwater systems[J]. Environmental Science & Technology, 52(21): 12039-12054.
doi: 10.1021/acs.est.8b03488
|
[22] |
HUGHES T P, HUANG HUI, YOUNG M A L, 2013. The wicked problem of China's disappearing coral reefs[J]. Conservation Biology, 27(2): 261-269.
doi: 10.1111/j.1523-1739.2012.01957.x
|
[23] |
IÑIGUEZ C, GALMÉS J, GORDILLO F J L, 2019. Rubisco carboxylation kinetics and inorganic carbon utilization in polar versus cold-temperate seaweeds[J]. Journal of Experimental Botany, 70(4): 1283-1297.
doi: 10.1093/jxb/ery443
|
[24] |
IPCC, 2014. Summary for policymakers[M]//IPCC. Climate Change 2013 - The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press: 1-30.
|
[25] |
JIANG LEI, ZHANG FANG, GUO MINGLAN, et al, 2018. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost[J]. Coral Reefs, 37(1): 71-79.
doi: 10.1007/s00338-017-1634-1
|
[26] |
KOCH M, BOWES G, ROSS C, et al, 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae[J]. Global Change Biology, 19(1): 103-132.
doi: 10.1111/j.1365-2486.2012.02791.x
|
[27] |
LEI XINMING, HUANG HUI, LIAN JIANSHENG, et al, 2018. Community structure of coralline algae and its relationship with environment in Sanya reefs, China[J]. Aquatic Ecosystem Health & Management, 21(1): 19-29.
|
[28] |
LI GANG, QIN ZHEN, ZHANG JIEJUN, et al, 2020. Algal density mediates the photosynthetic responses of a marine macroalga Ulva conglobata (Chlorophyta) to temperature and pH changes[J]. Algal Research, 46: 101797.
doi: 10.1016/j.algal.2020.101797
|
[29] |
LI GANG, MAI GUANGMING, ZHANG JIEJUN, et al, 2021. Rising pCO2 interacts with algal density to reversely alter photosynthetic responses of Gracilaria lemaneiformis and Ulva conglobata[J]. Algal Research, 54: 102231.
doi: 10.1016/j.algal.2021.102231
|
[30] |
MCGLATHERY K J, PEDERSEN M F, BORUM J, 1996. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta)[J]. Journal of Phycology, 32(3): 393-401.
doi: 10.1111/j.0022-3646.1996.00393.x
|
[31] |
SMALE D A, WERNBERG T, OLIVER E C J, et al, 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services[J]. Nature Climate Change, 9(4): 306-312.
doi: 10.1038/s41558-019-0412-1
|
[32] |
SONG XINGYU, TAN MEITING, XU GE, et al, 2019. Is phosphorus a limiting factor to regulate growth of phytoplankton in Daya Bay, northern South China Sea: A mesocosm experiment[J]. Ecotoxicology 28: 559-568.
|
[33] |
THOMSEN M S, MONDARDINI L, ALESTRA T, et al, 2019. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave[J]. Frontiers in Marine Science, 6: 84.
doi: 10.3389/fmars.2019.00084
|
[34] |
TITLYANOV E A, TITLYANOVA T V, LI XIUBAO, et al, 2017. Coral reef marine plants of Hainan Island[M]. Boston: Academic Press: 41-74.
|
[35] |
TONG HAOYA, CAI LIN, ZHOU GUOWEI, et al, 2017. Temperature shapes coral-algal symbiosis in the South China Sea[J]. Scientific Reports, 7: 40118.
doi: 10.1038/srep40118
|
[36] |
VERGÉS A, BENNETT S, BELLWOOD D R, 2012. Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison[J]. PLoS One, 7(9): e45543.
doi: 10.1371/journal.pone.0045543
|
[37] |
VON SCHUCKMANN K, CHENG LIJING, PALMER M D, et al, 2020. Heat stored in the Earth system: Where does the energy go?[J]. Earth System Science Data, 12(3): 2013-2041.
doi: 10.5194/essd-12-2013-2020
|
[38] |
WEI ZHANGLIANG, MO JIAHAO, HUANG RUIPING, et al, 2020. Physiological performance of three calcifying green macroalgae Halimeda species in response to altered seawater temperatures[J]. Acta Oceanologica Sinica, 39(2): 89-100.
|
[39] |
WELLBURN A R, 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 144(3): 307-313.
doi: 10.1016/S0176-1617(11)81192-2
|
[40] |
WILLIAMS P J L, RAINEA R C T, BRYAN J R, 1979. Agreement between the 14C and oxygen methods of measuring phytoplankton production: reassessment of the photosynthetic quotient[J]. Oceanologica Acta 2(4): 411-416.
|
[41] |
WERNBERG T, BENNETT S, BABCOCK R C, et al, 2016. Climate-driven regime shift of a temperate marine ecosystem[J]. Science, 353(6295): 169-172.
doi: 10.1126/science.aad8745
|
[42] |
YANG YUFENG, CHAI ZHAOYANG, WANG QING, et al, 2015. Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements[J]. Algal Research, 9: 236-244.
doi: 10.1016/j.algal.2015.03.017
|
[43] |
YUAN XIANGCHENG, GUO YAJUAN, CAI WEIJUN, et al, 2019. Coral responses to ocean warming and acidification: implications for future distribution of coral reefs in the South China Sea[J]. Marine Pollution Bulletin, 138: 241-248.
doi: 10.1016/j.marpolbul.2018.11.053
|
[44] |
ZOU DINGHUI, GAO KUNSHAN, 2005. Photosynthetic characteristics of the economic brown seaweed Hizikia fusiforme (Sargassaceae, Phaeophyta), with special reference to its “leaf” and receptacle[J]. Journal of Applied Phycology, 17(3): 255-259.
doi: 10.1007/s10811-005-5768-0
|
[45] |
ZOU DINGHUI, GAO KUNSHAN, 2014. Temperature response of photosynthetic light- and carbon-use characteristics in the red seaweed Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta)[J]. Journal of Phycology, 50(2): 366-375.
doi: 10.1111/jpy.12171
|