[1] |
郭亚娟, 周伟华, 袁翔城, 等, 2018. 两种造礁石珊瑚对海水酸化和溶解有机碳加富的响应[J]. 热带海洋学报, 37(1): 57-63.
doi: 10.11978/2017018
|
|
GUO YAJUAN, ZHOU WEIHUA, YUAN XIANGCHENG, et al, 2018. Responses of two species of reef-building corals to acidification and dissolved organic carbon enrichment[J]. Journal of Tropical Oceanography, 37(1): 57-63 (in Chinese with English abstract).
|
[2] |
黄晖, 俞晓磊, 雷新明, 等, 2020. 环境变化对造礁石珊瑚营养方式的影响及其适应性[J]. 海洋科学进展, 38(2): 189-198.
|
|
HUANG HUI, YU XIAOLEI, LEI XINMING, et al, 2020. Research progress in the effects of environmental changes on the nutritional patterns and adaptability of the scleractinian corals[J]. Advances in Marine Science, 38(2): 189-198 (in Chinese with English abstract).
|
[3] |
江雷, 黄晖, 张浴阳, 等, 2016. 海水升温对壮实鹿角珊瑚幼虫存活和附着的影响[J]. 应用海洋学学报, 35(2): 217-222.
|
|
JIANG LEI, HUANG HUI, ZHANG YUYANG, et al, 2016. Effects of elevated temperature on larval survival and settlement of the broadcast spawning coral Acropora robusta[J]. Journal of Applied Oceanography, 35(2): 217-222 (in Chinese with English abstract).
|
[4] |
李淑, 余克服, 施祺, 等, 2008. 海南岛鹿回头石珊瑚对高温响应行为的实验研究[J]. 热带地理, 28(6): 534-539.
|
|
LI SHU, YU KEFU, SHI QI, et al, 2008. Experimental study of stony coral response to the high temperature in Luhuitou of Hainan Island[J]. Tropical Geography, 28(6): 534-539 (in Chinese with English abstract).
|
[5] |
刘旭, 黄雯, 俞小鹏, 等, 2022. 适度热胁迫对造礁石珊瑚热耐受性影响的研究[J]. 海洋湖沼通报, 44(1): 99-105.
|
|
LIU XU, HUANG WEN, YU XIAOPENG, et al, 2022. Studies on the effect of moderate heat stress on the heat tolerance of scleractinian coral[J]. Transactions of Oceanology and Limnology, 44(1): 99-105 (in Chinese with English abstract).
|
[6] |
骆雯雯, 梁甲元, 余克服, 等, 2019. 涠洲岛两种石珊瑚在高温胁迫下共生细菌群落结构变化特征[J]. 广西科学, 26(3): 299-307.
|
|
LUO WENWEN, LIANG JIAYUAN, YU KEFU, et al, 2019. Characteristics of symbiotic bacterial community structure changes in two species of stony corals in Weizhou Island under high temperature stress[J]. Guangxi Sciences, 26(3): 299-307 (in Chinese with English abstract).
|
[7] |
时翔, 谭烨辉, 黄良民, 等, 2008. 磷酸盐胁迫对造礁石珊瑚共生虫黄藻光合作用的影响[J]. 生态学报, 28(6): 2581-2586.
|
|
SHI XIANG, TAN YEHUI, HUANG LIANGMIN, et al, 2008. Effects of phosphate stress on the photosynthesis of symbiotic algae on the hermatypic corals[J]. Acta Ecologica Sinica, 28(6):2581-2586 (in Chinese with English abstract).
|
[8] |
孙有方, 江雷, 雷新明, 等, 2020. 海洋酸化、暖化对两种鹿角珊瑚幼虫附着及幼体存活的影响[J]. 海洋学报, 42(4): 96-103.
|
|
SUN YOUFANG, JIANG LEI, LEI XINMING, et al, 2020. Effects of ocean acidification and warming on the larvae settlement and post-settlement survival of two reef-building corals[J]. Haiyang Xuebao, 42(4): 96-103 (in Chinese with English abstract).
|
[9] |
谭红建, 蔡榕硕, 颜秀花, 2018. 基于CMIP5预估21世纪中国近海海洋环境变化[J]. 应用海洋学学报, 37(2): 151-160.
|
|
TAN HONGJIAN, CAI RONGSHUO, YAN XIUHUA, 2018. Projecting changes of marine environment in coastal China Seas over 21st century based on CMIP5 Models[J]. Journal of Applied Oceanography, 37(2): 151-160 (in Chinese with English abstract).
|
[10] |
张成龙, 黄晖, 黄良民, 等, 2012. 海洋酸化对珊瑚礁生态系统的影响研究进展[J]. 生态学报, 32(5): 1606-1615.
|
|
ZHANG CHENGLONG, HUANG HUI, HUANG LIANGMIN, et al, 2012. Research progress on the effects of ocean acidification on coral reef ecosystems[J]. Acta Ecologica Sinica, 32(5): 1606-1615 (in Chinese with English abstract).
|
[11] |
赵美霞, 余克服, 张乔民, 等, 2008. 三亚鹿回头石珊瑚物种多样性的空间分布[J]. 生态学报, 28(4): 1419-1428.
|
|
ZHAO MEIXIA, YU KEFU, ZHANG QIAOMIN, et al, 2008. Spatial pattern of coral diversity in Luhuitou fringing reef, Sanya[J]. Acta Ecologica Sinica, 28(4): 1419-1428 (in Chinese with English abstract).
|
[12] |
郑新庆, 郭富雯, 刘昕明, 等, 2015. 海洋酸化没有显著影响成体鹿角杯形珊瑚的钙化作用和光合能力[J]. 海洋学报, 37(10): 59-68.
|
|
ZHENG XINQING, GUO FUWEN, LIU XINMING, et al, 2015. Ocean acidification does not significantly affect the calcification and photosynthesis capacity of hermatypic coral Pocillopora damicornis[J]. Haiyang Xuebao, 37(10): 59-68 (in Chinese with English abstract).
|
[13] |
ADZIS K A A, AMRI A Y, OLIVER J, et al, 2009. Effective and maximum quantum yield of the lace coral Pocillopora damicornis (Anthozoa: Scleractinia: Pocilloporidae) in Pulau Tioman, Malaysia[J]. Journal of Science and Technology in the Tropics, 5(1): 13-17.
|
[14] |
ANDERSON K D, HERON S F, PRATCHETT M S, 2015. Species-specific declines in the linear extension of branching corals at a subtropical reef, Lord Howe Island[J]. Coral Reefs, 34(2): 479-490.
|
[15] |
ANTHONY K R N, KLINE D I, DIAZ-PULIDO G, et al, 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(45): 17442-17446.
doi: 10.1073/pnas.0804478105
pmid: 18988740
|
[16] |
BAKER A C, STARGER C J, MCCLANAHAN T R, et al, 2004. Corals' adaptive response to climate change[J]. Nature, 430(7001): 741.
|
[17] |
BUDDEMEIER R W, KINZIE R A, 1976. Coral growth[J]. Oceanography and Marine Biology: An Annual Review, 14: 183-225.
|
[18] |
CHANCERELLE Y, 2000. Méthodes d'estimation des surfaces développées de coraux scléractiniaires à l'échelle d'une colonie ou d'un peuplement[J]. Oceanologica Acta, 23(2): 211-219.
|
[19] |
COMEAU S, EDMUNDS P J, SPINDEL N B, et al, 2014. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations[J]. Limnology and Oceanography, 59(3): 1081-1091.
|
[20] |
COMEAU S, CARPENTER R C, LANTZ C A, et al, 2015. Ocean acidification accelerates dissolution of experimental coral reef communities[J]. Biogeosciences, 12(2): 365-372.
|
[21] |
CRUZ-TRINIDAD A, ALIÑO P M, GERONIMO R C, et al, 2014. Linking food security with coral reefs and fisheries in the coral triangle[J]. Coastal Management, 42(2): 160-182.
|
[22] |
DAVIES P S, 1989. Short-term growth measurements of corals using an accurate buoyant weighing technique[J]. Marine Biology, 101(3): 389-395.
|
[23] |
EDMUNDS P J, 2005. The effect of sub-lethal increases in temperature on the growth and population trajectories of three scleractinian corals on the southern Great Barrier Reef[J]. Oecologia, 146(3): 350-364.
pmid: 16200400
|
[24] |
IPCC, 2014. Climate change 2013: the physical science basis: working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press: 255-316.
|
[25] |
JURY C P, TOONEN R J, 2019. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans[J]. Proceedings of the Royal Society B: Biological Sciences, 286(1902): 20190614.
|
[26] |
KORNDER N A, RIEGL B M, FIGUEIREDO J, 2018. Thresholds and drivers of coral calcification responses to climate change[J]. Global Change Biology, 24(11): 5084-5095.
doi: 10.1111/gcb.14431
pmid: 30152194
|
[27] |
KWIATKOWSKI L, TORRES O, BOPP L, et al, 2020. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections[J]. Biogeosciences, 17(13): 3439-3470.
|
[28] |
MANULLANG C, MILLYANINGRUM I H, IGUCHI A, et al, 2020. Responses of branching reef corals Acropora digitifera and Montipora digitata to elevated temperature and pCO2[J]. PeerJ, 8: e10562.
|
[29] |
MANZELLO D P, 2010. Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific[J]. Coral Reefs, 29(3): 749-758.
|
[30] |
MARSHALL A T, CLODE P, 2004. Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral[J]. Coral Reefs, 23(2): 218-224.
|
[31] |
MUEHLLEHNER N, EDMUNDS P J, 2008. Effects of ocean acidification and increased temperature on skeletal growth of two scleractinian corals, Pocillopora meandrina and Porites rus[C]// Proceedings of the 11th international coral reef symposium. Ft. Lauderdale, Florida, USA: Nova Southeastern University National Coral Reef Institute, 3(2): 57-61.
|
[32] |
RAVEN J, CALDEIRA K, ELDERFIELD H, et al, 2005. Ocean acidification due to increasing atmospheric carbon dioxide[M]. London: The Royal Society.
|
[33] |
RAZAK T B, ROFF G, LOUGH J M, et al, 2020. Growth responses of branching versus massive corals to ocean warming on the Great Barrier Reef, Australia[J]. Science of the Total Environment, 705: 135908.
|
[34] |
REYNAUD S, LECLERCQ N, ROMAINE-LIOUD S, et al, 2003. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral[J]. Global Change Biology, 9(11): 1660-1668.
|
[35] |
SMITH S V, KINSEY D W, 1976. Calcium carbonate production, coral reef growth, and sea level change[J]. Science, 194(4268): 937-939.
pmid: 17748553
|
[36] |
SMITH S V, 1978. Coral-reef area and the contributions of reefs to processes and resources of the world's oceans[J]. Nature, 273(5659): 225-226.
|
[37] |
SPALDING M D, GRENFELL A M, 1997. New estimates of global and regional coral reef areas[J]. Coral Reefs, 16(4): 225-230.
|
[38] |
STEINER Z, TURCHYN A V, HARPAZ E, et al, 2018. Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea[J]. Nature Communications, 9(1): 3615.
doi: 10.1038/s41467-018-06030-6
pmid: 30190471
|
[39] |
VAN DER ZANDE R M, ACHLATIS M, BENDER-CHAMP D, et al, 2020. Paradise lost: end-of-century warming and acidification under business-as-usual emissions have severe consequences for symbiotic corals[J]. Global Change Biology, 26(4): 2203-2219.
|