[1] |
代鲁平, 李超伦, 王世伟, 等, 2016. 基于ZooScan图像技术的南黄海夏季浮游动物群落结构分析[J]. 海洋与湖沼, 47(4): 764-773.
|
|
DAI LUPIN, LI CHAOLUN, WANG SHIWEI, et al, 2016. Analysis of community structure of zooplankton in south yellow sea in summer with zooscan[J]. Oceanologia et Limnologia Sinica, 47(4): 764-773. (in Chinese with English abstract)
|
[2] |
柯志新, 黄良民, 谭烨辉, 等, 2013. 2008年夏末南海北部叶绿素a的空间分布特征及其影响因素[J]. 热带海洋学报, 32(4): 51-57.
doi: 10.11978/j.issn.1009-5470.2013.04.008
|
|
KE ZHIXIN, HUANG LIANGMIN, TAN YEHUI, et al, 2013. Spatial distribution of chlorophyll a and its relationships with environmental factors in northern South China Sea in late summer 2008[J]. Journal of Tropical Oceanography, 32(4): 51-57. (in Chinese with English abstract)
|
[3] |
李开枝, 任玉正, 柯志新, 等, 2021. 南海东北部陆坡区中上层浮游动物的垂直分布[J]. 热带海洋学报, 40(2): 61-73.
doi: 10.11978/2020061
|
|
LI KAIZHI, REN YUZHENG, KE ZHIXIN, et al, 2021. Vertical distributions of epipelagic and mesopelagic zooplankton in the continental slope of the northeastern South China Sea[J]. Journal of Tropical Oceanography, 40(2): 61-73. (in Chinese with English abstract)
|
[4] |
连喜平, 谭烨辉, 刘永宏, 等, 2013. 两种浮游生物网对南海北部浮游动物捕获效率的比较[J]. 热带海洋学报, 32(3): 33-39.
doi: 10.11978/j.issn.1009-5470.2013.03.005
|
|
LIAN XIPING, TAN YEHUI, LIU YONGHONG, et al, 2013. Comparison of capture efficiency for zooplankton in the northern South China Sea, using two plankton mesh sizes[J]. Journal of Tropical Oceanography, 32(3): 33-39. (in Chinese with English abstract)
|
[5] |
孙松, 毕永坤, 孙晓霞, 2013. 基于图像技术的胶州湾浮游动物优势种体型参数与生物量转换关系研究[J]. 海洋与湖沼, 44(1): 15-22.
|
|
SUN SONG, BI YONGKUN, SUN XIAOXIA, 2013. Relationship between shape parameters and dry weight of the dominant zooplankton in Jiaozhou bay based on image method[J]. Oceanologia et Limnologia Sinica, 44(1): 15-22. (in Chinese with English abstract)
|
[6] |
赵静, 龚跃华, 何雪宝, 等, 2020. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 49(1): 108-118.
|
|
ZHAO JING, GONG YUEHUA, HE XUEBAO, et al, 2020. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea[J]. Geochimica, 49(1): 108-118. (in Chinese with English abstract)
|
[7] |
AZAM F, FENCHEL T, FIELD J G, et al, 1983. The ecological role of water-column microbes in the sea[J]. Marine Ecology Progress Series, 10(3): 257-263.
doi: 10.3354/meps010257
|
[8] |
BLANCHARD J L, HENEGHAN R F, EVERETT J D, et al, 2017. From bacteria to whales: using functional size spectra to model marine ecosystems[J]. Trends in Ecology & Evolution, 32(3): 174-186.
doi: 10.1016/j.tree.2016.12.003
|
[9] |
CAMPBELL K A, 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4): 362-407.
doi: 10.1016/j.palaeo.2005.06.018
|
[10] |
CARTES J E, FANELLI E, LÓPEZ-PÉREZ C, et al, 2013. Deep-sea macroplankton distribution (at 400 to 2300 m) in the northwestern mediterranean in relation to environmental factors[J]. Journal of Marine Systems, 113-114: 75-87.
doi: 10.1016/j.jmarsys.2012.12.012
|
[11] |
DAI LUPING, LI CHAOLUN, YANG GUANG, et al, 2016. Zooplankton abundance, biovolume and size spectra at western boundary currents in the subtropical North Pacific during winter 2012[J]. Journal of Marine Systems, 155: 73-83.
doi: 10.1016/j.jmarsys.2015.11.004
|
[12] |
DECKER M, BREITBURG D L, PURCELL J E, et al, 2004. Effects of low dissolved oxygen on zooplankton predation by the ctenophore Mnemiopsis leidyi[J]. Marine Ecology Progress Series, 280: 163-172.
doi: 10.3354/meps280163
|
[13] |
DICKIE L M, KERR S R, BOUDREAU P R, 1987. Size-dependent processes underlying regularities in ecosystem structure[J]. Ecological Monographs, 57(3): 233-250.
doi: 10.2307/2937082
|
[14] |
DORGHAM M M, ELSHERBINY M M, HANAFI M H, 2012. Vertical distribution of zooplankton in the epipelagic zone off sharm el-sheikh, eed sea, egypt[J]. Oceanologia, 54(3): 473-489.
doi: 10.5697/oc.54-3.473
|
[15] |
ELTON C S, 1927. Animal Ecology[M]. America: Macmillan.
|
[16] |
GARCÍA-COMAS C, CHANG CHUNYI, YE LIN, et al, 2014. Mesozooplankton size structure in response to environmental conditions in the East China Sea: how much does size spectra theory fit empirical data of a dynamic coastal area?[J]. Progress in Oceanography, 121: 141-157.
doi: 10.1016/j.pocean.2013.10.010
|
[17] |
GORSKY G, OHMAN M D, PICHERAL M, et al, 2010. Digital zooplankton image analysis using the ZooScan integrated system[J]. Journal of Plankton Research, 32(3): 285-303.
doi: 10.1093/plankt/fbp124
|
[18] |
GUILINI K, LEVIN L A, VANREUSEL A, 2012. Cold seep and oxygen minimum zone associated sources of margin heterogeneity affect benthic assemblages, diversity and nutrition at the Cascadian margin (NE Pacific Ocean)[J]. Progress in Oceanography, 96(1): 77-92.
doi: 10.1016/j.pocean.2011.10.003
|
[19] |
HOPCROFT R R, ROFF J C, CHAVEZ F P, 2001. Size paradigms in copepod communities: a re-examination[J]. Hydrobiologia, 453(1): 133-141.
|
[20] |
JACOBSEN N S, GISLASON H, ANDERSEN K H, 2014. The consequences of balanced harvesting of fish communities[J]. Proceedings of the Royal Society B: Biological Sciences, 281: 20132701.
doi: 10.1098/rspb.2013.2701
|
[21] |
JAGADEESAN L, SRINIVAS T N R, SURENDRA A, et al, 2020. Copepods size structure in various phases of a cold-core eddy -Normalised Abundance Size Spectra (NASS) approach[J]. Continental Shelf Research, 206: 154-197.
|
[22] |
KE ZHIXIN, TAN YEHUI, HUANG LIANGMIN, et al, 2018. Community structure and biovolume size spectra of mesozooplankton in the Pearl River Estuary[J]. Aquatic Ecosystem Health & Management, 21(1): 30-40.
|
[23] |
KERCKHOVE D T, SHUTER B J, MILNE S, et al, 2016. Acoustically derived fish size spectra within a lake and the statistical power to detect environmental change[J]. Canadian Journal of Fisheries and Aquatic Sciences, 73(4): 565-574.
doi: 10.1139/cjfas-2015-0222
|
[24] |
KIMMEL D G, ROMAN M R, 2004. Long-term trends in mesozooplankton abundance in Chesapeake Bay, USA: Influence of freshwater input[J]. Deep Sea Research Part B, 267: 71-83.
|
[25] |
KOPLIN J, 2020. Community composition of epipelagic zooplankton in the Eurasian Basin 2017 determined by ZooScan image analysis[D]. Hamburg: University of Hamburg.
|
[26] |
KOPPELMANN R, WEIKERT H, 1992. Full-depth zooplankton profiles over the deep bathyal of the NE Atlantic[J]. Marine Ecology Process Series, 86(3): 263-272.
|
[27] |
LAVIGNE H, D’ORTENZIO F, RIBERA D'ALCALÀ M, et al, 2015. On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach[J]. Biogeosciences, 12: 5021-5039.
doi: 10.5194/bg-12-5021-2015
|
[28] |
LEBOURGES-DHAUSSY A, HUGGETT J, OCKHUIS S, et al, 2014. Zooplankton size and distribution within mesoscale structures in the Mozambique Channel: A comparative approach using the TAPS acoustic profiler, a multiple net sampler and ZooScan image analysis[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 100: 136-152.
|
[29] |
LING JUAN, GUAN HONGXIANG, LIU LIHUA, et al, 2020. The Diversity, Composition, and Putative Functions of Gill-Associated Bacteria of Bathymodiolin Mussel and Vesicomyid Clam from Haima Cold Seep, South China Sea[J]. Microorganisms, 8(11): 1699.
doi: 10.3390/microorganisms8111699
|
[30] |
LIU HUAJIAN, ZHU MINGLIANG, GUO SHUOJIN, et al, 2020. Effects of an anticyclonic eddy on the distribution and community structure of zooplankton in the South China Sea northern slope[J]. Journal of Marine Systems, 205: 103311.
doi: 10.1016/j.jmarsys.2020.103311
|
[31] |
MA YAN’E, KE ZHIXIN, HUANG LIANGMIN, et al, 2014. Identification of human-induced perturbations in daya bay, China: evidence from plankton size structure[J]. Continental Shelf Research, 72: 10-20.
doi: 10.1016/j.csr.2013.10.012
|
[32] |
MARCOLIN C D R, SCHULTES S, JACKSON G A, et al, 2013. Plankton and seston size spectra estimated by the LOPC and ZooScan in the Abrolhos Bank ecosystem (SE Atlantic)[J]. Continental Shelf Research, 70: 74-87.
doi: 10.1016/j.csr.2013.09.022
|
[33] |
MARTY D G, 1993. Methanogenic bacteria in seawater[J]. Limnology and Oceanography, 38(2): 452-456.
doi: 10.4319/lo.1993.38.2.0452
|
[34] |
MURRY B A, FARRELL J M, 2014. Resistance of the size structure of the fish community to ecological perturbations in a large river ecosystem[J]. Freshwater Biology, 59(1): 155-167.
doi: 10.1111/fwb.2013.59.issue-1
|
[35] |
PAULL C K, HECKER B, COMMEAU R, et al, 1984. Biological communities at the florida escarpment resemble hydrothermal vent taxa[J]. Science, 226(4677): 965-967.
pmid: 17737352
|
[36] |
SCHMALE O, WAGE J, MOHRHOLZ V, et al, 2018. The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea[J]. Limnology and Oceanography, 63(1): 412-430.
doi: 10.1002/lno.10640
|
[37] |
SHELDON R W, SUTCLIFFE W H, PRAKASH A, 1972. The size distribution of particles in the ocean[J]. Limnology and Oceanography, 17(3): 327-340.
doi: 10.4319/lo.1972.17.3.0327
|
[38] |
TAKAHASHI M, HORI Y, 1984. Abundance of picophytoplankton in the subsurface chlorophyll maximum layer in subtropical and tropical waters[J]. Marine Biology, 79: 177-186.
doi: 10.1007/BF00951826
|
[39] |
TARASOV V G, 2006. Effects of shallow‐water hydrothermal venting on biological communities of coastal marine ecosystems of the western pacific[J]. Advances in Marine Biology, 50: 267-421.
|
[40] |
TRAGANZ E D, SWINNERTON J W, CHEEK C H, 1979. Methane supersaturation and ATP-zooplankton blooms in near-surface waters of the Western Mediterranean and the subtropical North Atlantic Ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 26(11): 1237-1245.
doi: 10.1016/0198-0149(79)90066-9
|
[41] |
TSENG L C, DAHMS H U, KUMAR R, et al, 2013. Autumn community structure in the shallow mixed layer of the subtropical South China Sea reveals a peculiar copepod and zooplankton assemblage[J]. Journal of Natural History, 47(5): 667-683.
doi: 10.1080/00222933.2012.716866
|
[42] |
URSELLA L, CARDIN V, BATISTIĆ M, et al, 2018. Evidence of zooplankton vertical migration from continuous Southern Adriatic buoy current-meter records[J]. Progress in Oceanography, 167: 78-96.
doi: 10.1016/j.pocean.2018.07.004
|
[43] |
VAN DOVER C L, GERMAN C R, SPEER K G, et al, 2002. Evolution and biogeography of deep-sea vent and seep invertebrates[J]. Science, 295(5558): 1253-1257.
pmid: 11847331
|
[44] |
VERITY P G, SMETACEK V, 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems[J]. Marine Ecology Progress Series, 130(1-3): 277-293.
doi: 10.3354/meps130277
|
[45] |
WANG JILIANG, WU SHIGUO, KONG XIU, et al, 2018. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Asian Earth Sciences, 168: 17-26.
doi: 10.1016/j.jseaes.2018.06.001
|
[46] |
WEIKERT H, KOPPELMANN R, WIEGRATZ S, 2001. Evidence of episodic changes in deep-sea mesozooplankton abundance and composition in the Levantine Sea (Eastern Mediterranean)[J]. Journal of Marine Systems, 30(3-4): 221-239.
doi: 10.1016/S0924-7963(01)00060-4
|
[47] |
ZHOU LINBIN, HUANG LIANGMIN, TAN YEHUI, et al, 2014. Size-based analysis of a zooplankton community under the influence of the Pearl River plume and coastal upwelling in the northeastern South China Sea[J]. Marine Biology Research, 11(2): 168-179.
doi: 10.1080/17451000.2014.904882
|
[48] |
ZHOU LINBIN, TAN YEHUI, HUANG LIANGMIN, et al, 2013. Size-based analysis for the state and heterogeneity of pelagic ecosystems in the northern South China Sea[J]. Journal of Oceanography, 69: 379-393.
doi: 10.1007/s10872-013-0180-x
|
[49] |
ZHOU MENG, 2006. What determines the slope of a plankton biomass spectrum?[J]. Journal of Plankton Research, 28(5): 437-448.
doi: 10.1093/plankt/fbi119
|