[1] |
董俊德, 王汉奎, 张偲, 等, 2002. 海洋固氮生物多样性及其对海洋生产力的氮、碳贡献[J]. 生态学报, 22(10): 1741-1749.
|
|
DONG JUNDE, WANG HANKUI, ZHANG SI, et al, 2002. Marine nitrogen-fixing organisms and their contribution to the N and C requirement for marine biological production[J]. Acta Ecologica Sinica, 22(10): 1741-1749 (in Chinese with English abstract).
|
[2] |
方安琪, 贺志理, 王成, 等, 2020. 红树林沉积物中微生物驱动硫循环研究进展[J]. 微生物学报, 60(1): 13-25.
|
|
FANG ANQI, HE ZHILI, WANG CHENG, et al, 2020. Progress in studying microbially-driven sulfur cycling in mangrove sediments[J]. Acta Microbiologica Sinica, 60(1): 13-25 (in Chinese with English abstract).
|
[3] |
何雪香, 李玫, 廖宝文, 2012. 红树林固氮菌和解磷菌的分离及对秋茄苗的促生效果[J]. 华南农业大学学报, 33(1): 64-68.
|
|
HE XUEXIANG, LI MEI, LIAO BAOWEN, 2012. Isolation of nitrogen-fixing bacteria and phosphate-solubilizing bacteria from the rhizosphere of mangrove plants and their enhancement to the growth of Kandelia candel seedlings[J]. Journal of South China Agricultural University, 33(1): 64-68 (in Chinese with English abstract).
|
[4] |
凌娟, 董俊德, 张燕英, 等, 2010. 一株红树林根际固氮菌的分离、鉴定以及固氮活性测定[J]. 热带海洋学报, 29(5): 149-153.
|
|
LING JUAN, DONG JUNDE, ZHANG YANYING, et al, 2010. Isolation and characterization of a N2-Fixing Bacterium from the mangrove rhizosphere and study on its nitrogen-fixing ability[J]. Journal of Tropical Oceanography, 29(5): 149-153 (in Chinese with English abstract).
doi: 10.11978/j.issn.1009-5470.2010.05.149
|
[5] |
王荣丽, 廖宝文, 何雪香, 等, 2015. PGPB菌剂对5种红树小苗的野外接菌效应[J]. 东北林业大学学报, 43(1): 103-106.
|
|
WANG RONGLI, LIAO BAOWEN, HE XUEXIANG, et al, 2015. Effects of PGPB inoculation on five species of mangrove seedlings in the field[J]. Journal of North-East Forestry University, 43(1): 103-106 (in Chinese with English abstract).
|
[6] |
周海霞, 刘其友, 郑经堂, 2013. 海洋微生物固氮作用研究进展[J]. 化学与生物工程, 30(11): 5-9, 30.
|
|
ZHOU HAIXIA, LIU QIYOU, ZHENG JINGTANG, 2013. Research progress on marine microbial nitrogen fixation[J]. Chemistry & Bioengineering, 30(11): 5-9, 30 (in Chinese with English abstract).
|
[7] |
ALFARO-ESPINOZA G, ULLRICH M S, 2014. Marinobacterium mangrovicola sp. nov., a marine nitrogen-fixing bacterium isolated from mangrove roots of Rhizophora mangle[J]. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 12): 3988-3993.
doi: 10.1099/ijs.0.067462-0
|
[8] |
ALFARO-ESPINOZA G, ULLRICH M S, 2015. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph-mangrove interaction[J]. Frontiers in Microbiology, 6: 445.
|
[9] |
ALVARENGA D O, RIGONATO J, ZANINI BRANCO L H, et al, 2015. Cyanobacteria in mangrove ecosystems[J]. Biodiversity and Conservation, 24(4): 799-817.
doi: 10.1007/s10531-015-0871-2
|
[10] |
BASHAN Y, MORENO M, TROYO E, 2000. Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp.[J]. Biology and Fertility of Soils, 32(4): 265-272.
doi: 10.1007/s003740000246
|
[11] |
BASHAN Y, PUENTE M E, MYROLD D D, et al, 1998. In vitro transfer of fixed nitrogen from diazotrophic filamentous cyanobacteria to black mangrove seedlings[J]. FEMS Microbiology Ecology, 26(3): 165-170.
doi: 10.1111/fem.1998.26.issue-3
|
[12] |
CAPONE D G, POPA R, FLOOD B, et al, 2006. Follow the Nitrogen[J]. Science, 312(5774): 708-709.
doi: 10.1126/science.1111863
|
[13] |
CASTRO R A, DOURADO M N, DE ALMEIDA J R, et al, 2018. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth[J]. Brazilian Journal of Microbiology, 49(1): 59-66.
doi: S1517-8382(16)30749-3
pmid: 28774638
|
[14] |
DAVID K A, APTE S K, BANERJI A, et al, 1980. Acetylene reduction assay for nitrogenase activity: gas chromatographic determination of ethylene per sample in less than one minute[J]. Applied and Environmental Microbiology, 39(5): 1078-1080.
doi: 10.1128/aem.39.5.1078-1080.1980
pmid: 16345570
|
[15] |
DAS S, DE TK, 2018. Microbial assay of N2 fixation rate, a simple alternate for acetylene reduction assay[J]. Methodsx, 5: 909-914.
doi: 10.1016/j.mex.2017.11.010
|
[16] |
DO CARMO F L, DOS SANTOS H F, MARTINS E F, et al, 2011. Bacterial structure and characterization of plant growth promoting and oil degrading bacteria from the rhizospheres of mangrove plants[J]. Journal of Microbiology, 49(4): 535-543.
doi: 10.1007/s12275-011-0528-0
pmid: 21887634
|
[17] |
FLORES-MIRELES A L, WINANS S C, HOLGUIN G, 2007. Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots[J]. Applied and Environmental Microbiology, 73(22): 7308-7321.
doi: 10.1128/AEM.01892-06
|
[18] |
FOSTER R A, KUYPERS M M M, VAGNER T, et al, 2011. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses[J]. The ISME Journal Emultidisciplinary Journal of Microbial Ecology, 5(9): 1484-1493.
|
[19] |
FRANCE R, HOLMQUIST J, CHANDLER M, et al, 1998. δ15N evidence for nitrogen fixation associated with macroalgae from a seagrass-mangrove-coral reef system[J]. Marine Ecology Progress Series, 167: 297-299.
doi: 10.3354/meps167297
|
[20] |
GALLOWAY J N, 2005. The global nitrogen cycle: Past, present and future[J]. Science in China Series C: Life Sciences, 48: 669-677.
|
[21] |
GHOSH W, DAM B, 2009. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea[J]. FEMS Microbiology Reviews, 33(6): 999-1043.
doi: 10.1111/j.1574-6976.2009.00187.x
pmid: 19645821
|
[22] |
GOLDBERG L, LAGOMASINO D, THOMAS N, et al, 2020. Global declines in human-driven mangrove loss[J]. Global Change Biology, 26(10): 5844-5855.
doi: 10.1111/gcb.v26.10
|
[23] |
HAN QIN, MA QUN, CHEN YONG, et al, 2020. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean[J]. The ISME Journal, 14(8): 1915-1928.
doi: 10.1038/s41396-020-0648-9
|
[24] |
HARTMANN A, BASHAN Y, 2009. Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB)-Special Issue[J]. European Journal of Soil Biology, 45(1): 1-2.
doi: 10.1016/j.ejsobi.2008.11.004
|
[25] |
HASKETT T L, PARAMASIVAN P, MENDES M D, et al, 2022. Engineered plant control of associative nitrogen fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 119(16): e2117465119.
|
[26] |
HOLGUIN G, GONZALEZ-ZAMORANO P, DE-BASHAN L E, et al, 2006. Mangrove health in an arid environment encroached by urban development-a case study[J]. Science of The Total Environment, 363(1-3): 260-274.
doi: 10.1016/j.scitotenv.2005.05.026
|
[27] |
HOLGUIN G, GUZMAN M A, BASHAN Y, 1992. Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp.[J]. FEMS Microbiology Ecology, 101(3): 207-216.
doi: 10.1016/0168-6496(92)90037-T
|
[28] |
HOLGUIN G, VAZQUEZ P, BASHAN Y, 2001. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview[J]. Biology and Fertility of Soils, 33(4): 265-278.
doi: 10.1007/s003740000319
|
[29] |
HU YUZHONG, GUO YU, LAI QILIANG, et al, 2020. Draconibacterium mangrovi sp. nov., isolated from mangrove sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 70(8): 4816-4821.
doi: 10.1099/ijsem.0.004354
|
[30] |
HUANG XIAOFANG, FENG JIANXIANG, DONG JUNDE, et al, 2022a. Spartina alterniflora invasion and mangrove restoration alter diversity and composition of sediment diazotrophic community[J]. Applied Soil Ecology, 177: 104519.
doi: 10.1016/j.apsoil.2022.104519
|
[31] |
HUANG XIAO-FANG, LIU YUJUAN, DONG JUN-DE, et al, 2014. Mangrovibacterium diazotrophicum gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove sediment, and proposal of Prolixibacteraceae fam. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 3): 875-881.
doi: 10.1099/ijs.0.052779-0
|
[32] |
HUANG XIAOFANG, YANG QINGSONG, FENG JIANXIANG, et al, 2022b. Introduction of exotic species Sonneratia apetala alters diazotrophic community and stimulates nitrogen fixation in mangrove sediments[J]. Ecological Indicators, 142: 109179.
doi: 10.1016/j.ecolind.2022.109179
|
[33] |
HUANG ZHAOBIN, HU YUZHONG, LAI QILIANG, et al, 2020. Description of Maribellus sediminis sp. nov., a marine nitrogen-fixing bacterium isolated from sediment of cordgrass and mangrove[J]. Systematic and Applied Microbiology, 43(4): 126099.
doi: 10.1016/j.syapm.2020.126099
|
[34] |
INOUE T, KOHZU A, SHIMONO A, 2019. Tracking the route of atmospheric nitrogen to diazotrophs colonizing buried mangrove roots[J]. Tree Physiology, 39(11): 1896-1906.
doi: 10.1093/treephys/tpz088
pmid: 31553462
|
[35] |
INOUE T, NOHARA S, TAKAGI H, et al, 2011. Contrast of nitrogen contents around roots of mangrove plants[J]. Plant and Soil, 339(1-2): 471-483.
doi: 10.1007/s11104-010-0604-y
|
[36] |
INOUE T, SHIMONO A, AKAJI Y, et al, 2020. Mangrove-diazotroph relationships at the root, tree and forest scales: diazotrophic communities create high soil nitrogenase activities in Rhizophora stylosa rhizospheres[J]. Annals of Botany, 125(1): 131-144.
doi: 10.1093/aob/mcz164
pmid: 31678987
|
[37] |
JANARTHINE S R S, EGANATHAN P, 2012. Plant growth promoting of endophytic Sporosarcina aquimarina SjAM16103 Isolated from the pneumatophores of Avicennia marina L.[J]. International journal of microbiology, 2012: 532060.
|
[38] |
JING HONGMEI, XIA XIAOMIN, LIU HONGBIN, et al, 2015. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing[J]. Frontiers in Microbiology, 6: 1172.
|
[39] |
KATHIRESAN K, SELVAM M M, 2006. Evaluation of beneficial bacteria from mangrove soil[J]. Botanica Marina, 49(1): 86-88.
|
[40] |
KOLTON M, ROLANDO J L, KOSTKA J E, 2020. Elucidation of the rhizosphere microbiome linked to Spartina alterniflora phenotype in a salt marsh on Skidaway Island, Georgia, USA[J]. FEMS Microbiology Ecology, 96(4): fiaa026.
doi: 10.1093/femsec/fiaa026
|
[41] |
KYARUZI J J, KYEWALYANGA M S, MURUKE M H S, 2003. Cyanobacteria composition and impact of seasonality on their in situ nitrogen fixation rate in a mangrove ecosystem adjacent to Zanzibar Town[J]. Western Indian Ocean Journal of Marine Science, 2(1): 35-44.
|
[42] |
LECHENE C, HILLION F, MCMAHON G, et al, 2006. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry[J]. Journal of Biology, 5(6): 20.
pmid: 17010211
|
[43] |
LEE R Y, JOYE S B, 2006. Seasonal patterns of nitrogen fixation and denitrification in oceanic mangrove habitats[J]. Marine Ecology Progress Series, 307: 127-141.
doi: 10.3354/meps307127
|
[44] |
LIN XIAOLAN, HETHARUA B, LIN LIAN, et al, 2019. Mangrove sediment microbiome: adaptive microbial assemblages and their routed biogeochemical processes in Yunxiao Mangrove National Nature Reserve, China[J]. Microbial Ecology, 78(1): 57-69.
doi: 10.1007/s00248-018-1261-6
pmid: 30284602
|
[45] |
LIU JIANYIN, PENG MENGJUN, LI YOUGUO, 2012. Phylogenetic diversity of nitrogen-fixing bacteria and the nifH gene from mangrove rhizosphere soil[J]. Canadian Journal of Microbiology, 58(4): 531-539.
doi: 10.1139/w2012-016
|
[46] |
LIU XINGYU, YANG CHAO, YU XIAOLI, et al, 2020. Revealing structure and assembly for rhizophyte-endophyte diazotrophic community in mangrove ecosystem after introduced Sonneratia apetala and Laguncularia racemosa[J]. Science of The Total Environment, 721: 137807.
doi: 10.1016/j.scitotenv.2020.137807
|
[47] |
LIU YANG, ZHOU ZHICHAO, PAN JIE, et al, 2018. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota[J]. The ISME Journal, 12(4): 1021-1031.
doi: 10.1038/s41396-018-0060-x
|
[48] |
LOGANATHAN P, NAIR S, 2004. Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka)[J]. International Journal of Systematic and Evolutionary Microbiology, 54(Pt 4): 1185-1190.
doi: 10.1099/ijs.0.02817-0
|
[49] |
LUGOMELA C, BERGMAN B, 2002. Biological N2-fixation on mangrove pneumatophores: Preliminary observations and perspectives[J]. Ambio, 31(7-8): 612-613.
pmid: 12572832
|
[50] |
LUO ZHIWEN, ZHONG QIUPING, HAN XINGGUO, et al, 2021. Depth-dependent variability of biological nitrogen fixation and diazotrophic communities in mangrove sediments[J]. Microbiome, 9(1): 212.
doi: 10.1186/s40168-021-01164-0
pmid: 34702367
|
[51] |
MA XIAOXIA, JIANG ZHAO-YU, WU PENG, et al, 2021. Effect of mangrove restoration on sediment properties and bacterial community[J]. Ecotoxicology, 30(5): 1672-1679.
doi: 10.1007/s10646-021-02370-0
|
[52] |
MONTOYA J P, VOSS M, KAHLER P, et al, 1996. A simple, high-precision, high-sensitivity tracer assay for N(inf2) Fixation[J]. Applied and Environmental Microbiology, 62(3): 986-993.
doi: 10.1128/aem.62.3.986-993.1996
pmid: 16535283
|
[53] |
MOSEMAN S M, ZHANG RUI, QIAN PEIYUAN, et al, 2009. Diversity and functional responses of nitrogen-fixing microbes to three wetland invasions[J]. Biological Invasions, 11(2): 225-239.
doi: 10.1007/s10530-008-9227-0
|
[54] |
MUKHERJEE P, MITRA A, ROY M, 2019. Halomonas rhizobacteria of Avicennia marina of Indian Sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production[J]. Frontiers in Microbiology, 10: 1207.
doi: 10.3389/fmicb.2019.01207
|
[55] |
NIE SHIQING, ZHANG ZUFAN, MO SHUMING, et al, 2021. Desulfobacterales stimulates nitrate reduction in the mangrove ecosystem of a subtropical gulf[J]. Science of The Total Environment, 769: 144562.
doi: 10.1016/j.scitotenv.2020.144562
|
[56] |
PAHARI A, NAYAK S K, BANIK A, et al, 2021. Biological nitrogen fixation mechanism and applications[C]//B. B. MISHRA, S. K. NAYAK, A. PAHARI. Agriculturally Important Microorganisms. 202110.1201/9781003245841-7.
|
[57] |
PELEGRAÍ S P, RIVERA-MONROY V H, TWILLEY R R, 1997. A comparison of nitrogen fixation (acetylene reduction) among three species of mangrove litter, sediments, and pneumatophores in south Florida, USA[J]. Hydrobiologia, 356(1-3): 73-79.
doi: 10.1023/A:1003124316042
|
[58] |
PELEGRÍ S P, TWILLEY R R, 1998. Heterotrophic nitrogen fixation (acetylene reduction) during leaf-litter decomposition of two mangrove species from South Florida, USA[J]. Marine Biology, 131(1): 53-61.
doi: 10.1007/s002270050296
|
[59] |
PURVAJA R, RAMESH R, RAY A K, et al, 2008. Nitrogen cycling: A review of the processes, transformations and fluxes in coastal ecosystems[J]. Current Science, 94(11): 1419-1438.
|
[60] |
RAMESHKUMAR N, FUKUI Y, SAWABE T, et al, 2008. Vibrio porteresiae sp. nov., a diazotrophic bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka)[J]. International Journal of Systematic and Evolutionary Microbiology, 58(Pt 7): 1608-1615.
doi: 10.1099/ijs.0.65604-0
|
[61] |
RAMESHKUMAR N, GOMEZ-GIL B, SPRÖER C, et al, 2011. Vibrio plantisponsor sp. nov., a diazotrophic bacterium isolated from a mangrove associated wild rice (Porteresia coarctata Tateoka)[J]. Systematic and Applied Microbiology, 34(7): 487-493.
doi: 10.1016/j.syapm.2011.02.005
|
[62] |
RAMESHKUMAR N, LANG E, NAIR S, 2010a. Mangrovibacter plantisponsor gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka)[J]. International Journal of Systematic and Evolutionary Microbiology, 60(Pt 1): 179-186.
doi: 10.1099/ijs.0.008292-0
|
[63] |
RAMESHKUMAR N, NAIR S, 2009. Isolation and molecular characterization of genetically diverse antagonistic, diazotrophic red-pigmented vibrios from different mangrove rhizospheres[J]. FEMS Microbiology Ecology, 67(3): 455-467.
doi: 10.1111/j.1574-6941.2008.00638.x
pmid: 19187214
|
[64] |
RAMESHKUMAR N, SPROER C, LANG E, et al, 2010b. Vibrio mangrovi sp. nov., a diazotrophic bacterium isolated from mangrove-associated wild rice (Poteresia coarctata Tateoka)[J]. FEMS Microbiology Letters, 307(1): 35-40.
doi: 10.1111/fml.2010.307.issue-1
|
[65] |
RAVIKUMAR S, GNANADESIGAN M, IGNATIAMMAL S T M, et al, 2012. Population dynamics of free living, nitrogen fixing bacteria Azospirillum in Manakkudi mangrove ecosystem, India[J]. Journal of Environmental Biology, 33(3): 597-602.
|
[66] |
RAVIKUMAR S, KATHIRESAN K, IGNATIAMMAL S T M, et al, 2004. Nitrogen-fixing azotobacters from mangrove habitat and their utility as marine biofertilizers[J]. Journal of Experimental Marine Biology and Ecology, 312(1): 5-17.
doi: 10.1016/j.jembe.2004.05.020
|
[67] |
ROJAS A, HOLGUIN G, GLICK B R, et al, 2001. Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere[J]. FEMS Microbiology Ecology, 35(2): 181-187.
doi: 10.1111/fem.2001.35.issue-2
|
[68] |
SEITZINGER S P, GARBER J H, 1987. Nitrogen fixation and 15N2 calibration of the acetylene reduction assay in coastal marine sediments[J]. Marine Ecology-Progress Series, 37(3): 65-73.
doi: 10.3354/meps037065
|
[69] |
SHAKILABANU S, KANCHANA D, JAYANTHI M, 2012. Biodiversity of Plant Growth Promoting Rhizobacteria (PGPR) in mangrove ecosystem: A review[J]. International Journal of Pharmaceutical & Biological Archive, 3(3): 418-422.
|
[70] |
SHIAU Y-J, LIN MING-FEN, TAN CHEN-CHUNG, et al, 2017. Assessing N2 fixation in estuarine mangrove soils[J]. Estuarine, Coastal and Shelf Science, 189: 84-89.
doi: 10.1016/j.ecss.2017.03.005
|
[71] |
SHIAU Y-J, LIN YU-TE, YAM R S W, et al, 2021. Composition and activity of N2-fixing microorganisms in mangrove forest soils[J]. Forests, 12(7): 822.
doi: 10.3390/f12070822
|
[72] |
SHRIDHAR B S, 2012. Review: nitrogen fixing microorganisms[J]. International Journal of Microbiological Research, 3(1): 46-52.
|
[73] |
SINGH T, BHADURY P, 2019. Description of a new marine planktonic cyanobacterial species Synechococcus moorigangaii (Order Chroococcales) from Sundarbans mangrove ecosystem[J]. Phytotaxa, 393(3): 263-277.
doi: 10.11646/phytotaxa.393.3
|
[74] |
STEWART W D, FITZGERALD G P, BURRIS R H, 1967. In situ studies on N2 fixation using the acetylene reduction technique[J]. Proceedings of the National Academy of Sciences of the United States of America, 58(5): 2071-2078.
|
[75] |
SUN XINLI, XU ZHIHUI, XIE JIYU, et al, 2022. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J]. The ISME Journal, 16(3): 774-787.
doi: 10.1038/s41396-021-01125-3
|
[76] |
THOMPSON A W, FOSTER R A, KRUPKE A, et al, 2012. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga[J]. Science, 337(6101): 1546-1550.
pmid: 22997339
|
[77] |
TRINDADE-SILVA A E, MACHADO-FERREIRA E, SENRA M V X, et al, 2009. Physiological traits of the symbiotic bacterium Teredinibacter turnerae isolated from the mangrove shipworm Neoteredo reynei[J]. Genetics and Molecular Biology, 32(3): 572-581.
doi: 10.1590/S1415-47572009005000061
|
[78] |
VOVIDES A G, BASHAN Y, LÓPEZ-PORTILLO J A, et al, 2011. Nitrogen fixation in preserved, reforested, naturally regenerated and impaired mangroves as an indicator of functional restoration in mangroves in an arid region of Mexico[J]. Restoration Ecology, 19(201): 236-244.
doi: 10.1111/j.1526-100X.2010.00713.x
|
[79] |
XIAN WEN-DONG, SALAM N, LI MENG-MENG, et al, 2020. Network-directed efficient isolation of previously uncultivated Chloroflexi and related bacteria in hot spring microbial mats[J]. NPJ Biofilms Microbiomes, 6(1): 20.
doi: 10.1038/s41522-020-0131-4
|
[80] |
XIONG YANMEI, ZHANG XAIOJUN, HE XUEXIANG, et al, 2016. Species-specific effects of P-solubilizing and N2-fixing bacteria on seedling growth of three salt-tolerant trees[J]. Russian Journal of Ecology, 47(3): 259-265.
doi: 10.1134/S1067413616030164
|
[81] |
YU HUANG, LIU XINGYU, YANG CHAO, et al, 2021. Co-symbiosis of arbuscular mycorrhizal fungi (AMF) and diazotrophs promote biological nitrogen fixation in mangrove ecosystems[J]. Soil Biology and Biochemistry, 161: 108382.
doi: 10.1016/j.soilbio.2021.108382
|
[82] |
ZEHR J P, CAPONE D G, 2020. Changing perspectives in marine nitrogen fixation[J]. Science, 368(6492): eaay9514.
doi: 10.1126/science.aay9514
|
[83] |
ZHANG JINGYING, LIU YONGXIN, GUO XIAOXUAN, et al, 2021. High-throughput cultivation and identification of bacteria from the plant root microbiota[J]. Nature Protocols, 16(2): 988-1012.
doi: 10.1038/s41596-020-00444-7
pmid: 33442053
|
[84] |
ZHANG YANYING, DONG JUNDE, YANG ZHIHAO, et al, 2008. Phylogenetic diversity of nitrogen-fixing bacteria in mangrove sediments assessed by PCR-denaturing gradient gel electrophoresis[J]. Archives of Microbiology, 190(1): 19-28.
doi: 10.1007/s00203-008-0359-5
pmid: 18347779
|
[85] |
ZHANG YANYING, YANG QINSONG, LING JUAN, et al, 2017. Diversity and structure of diazotrophic communities in mangrove rhizosphere, revealed by high-throughput sequencing[J]. Frontiers in Microbiology, 8: 2032.
doi: 10.3389/fmicb.2017.02032
pmid: 29093705
|
[86] |
ZUBERER D A, SILVER W S, 1978. Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves[J]. Applied and Environmental Microbiology, 35(3): 567-575.
doi: 10.1128/aem.35.3.567-575.1978
pmid: 637550
|