热带海洋学报 ›› 2024, Vol. 43 ›› Issue (4): 153-164.doi: 10.11978/2023130CSTR: 32234.14.2023130

• 海洋环境科学 • 上一篇    下一篇

基于双浮标连续监测资料分析大亚湾西南部海域水体环境变化特征及其影响因素

奚琛1(), 林宗轩2, 萨如拉3, 邓玺1, 刘强1, 倪亮1, 罗来才4, 马腾5, 谢智杰6, 陈思若2, 陈松泽3()   

  1. 1.中广核研究院有限公司, 广东 深圳 518000
    2.海洋地球古菌组学重点实验室, 南方科技大学, 广东 深圳 518055
    3.广东省深圳生态环境监测中心站, 广东 深圳 518049
    4.深圳市朗诚科技股份有限公司, 广东 深圳 518000
    5.哈尔滨工程大学, 黑龙江 哈尔滨 150001
    6.海洋科学与工程系, 南方科技大学, 广东 深圳 518055
  • 收稿日期:2023-08-29 修回日期:2023-09-26 出版日期:2024-07-10 发布日期:2024-07-22
  • 作者简介:

    奚琛(1994—), 男, 陕西省人, 主要从事核设备设计及研究工作。email:

  • 基金资助:
    国家自然科学基金(42141003); 广东省基础与应用基础研究基金深圳市联合基金项目(2021B1515120080); 南方科技大学深圳海洋地球古菌组学重点实验室项目(ZDSYS201802081843490); 广东大学生科技创新培育专项资金资助项目(pdjh2022c0029)

Analysis of water environmental changes and influencing factors in the southwestern waters of the Daya Bay based on continuous monitoring data from dual buoys

XI Chen1(), LIN Zongxuan2, SA Rula3, DENG Xi1, LIU Qiang1, NI Liang1, LUO Laicai4, MA Teng5, XIE Zhijie6, CHEN Siruo2, CHEN Songze3()   

  1. 1. China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518000, China
    2. Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
    3. Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China
    4. Shenzhen Lightsun Industry Co. Ltd., Shenzhen 518000, China
    5. Harbin Engineering University, Harbin 150001, China
    6. Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518005, China
  • Received:2023-08-29 Revised:2023-09-26 Online:2024-07-10 Published:2024-07-22
  • Supported by:
    National Natural Science Foundation of China(42141003); Key Program of Guangdong Basic and Applied Basic Research Fund (Guangdong-Shenzhen Joint Fund)(2021B1515120080); Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology(ZDSYS201802081843490); Special Funds for the Cultivation of Guangdong College Students’ Scientific and Technological Innovation(pdjh2022c0029)

摘要:

水质环境监测对了解海洋生态系统变化至关重要。本文利用2022—2023年期间位于大亚湾西南部海域的2个浮标的连续监测数据, 分析了水质环境的时间序列变化。结果表明, 大亚湾西南部海域的温度、盐度可能受太阳辐射与降水的影响, 具有明显的季节性差异, 即夏季温度高、盐度低, 冬季温度低、盐度较高; 而Chl a具有明显的昼夜节律, 溶解氧和pH存在相似的日变化模式。在夏、秋季, 大鹏澳较杨梅坑海域呈现出高温、低盐、低溶解氧、低pH和高Chl a的特点。Pearson相关性分析表明, 夏、秋季的温度、盐度、溶解氧、pH和Chl a之间存在显著的相关性, 且存在区域差异, 湾口附近, 海浪、上升流等水体运动可能是主要影响因素; 近岸, 径流输入可能是导致水质环境变化的主导因素。此外, 本文还记录了远距离台风引起的海浪及降水事件, 继而对大亚湾海域环境造成影响。解析沿海环境参数时间序列的变化特征, 对海洋生态系统的演变特征研究具有重要指示作用。

关键词: 大亚湾, 近岸海域, 环境参数, 在线监测, 分布特征

Abstract:

The monitoring of water quality is very important to understand the changes in marine ecosystem. Based on the continuous monitoring data of two buoys in the southwest of the Daya Bay from 2022 to 2023, this paper analyzes the time series changes in water quality environment. The results showed that the temperature and salinity in the southwest of the Daya Bay were affected by solar radiation and precipitation, with obvious seasonal differences. The temperature and salinity were high in summer and low in winter; chlorophyll a, dissolved oxygen and pH showed obvious diurnal changes. In summer and autumn, the Dapeng Cove was characterized by high temperature, low salinity, low dissolved oxygen, low pH, and high chlorophyll a compared with the Yangmeikeng. Pearson correlation analysis showed that there was a significant correlation among temperature, salinity, dissolved oxygen, pH, and chlorophyll a in summer and autumn, and there were regional differences. Near the bay mouth, waves, upwelling, and other water movements may be the main influencing factors; nearshore, the increase of runoff input may be the primary dominant factor causing changes of water quality. In addition, this article also recorded the impact of distant typhoons causing waves and precipitation events, thus affecting the environment of the Daya Bay. Analyzing the characteristics of the changes in the time series of coastal environmental parameters has important implications for studying the evolutionary characteristics of marine ecosystems.

Key words: Daya Bay, coastal area, environmental parameters, online monitoring, distribution characteristic