[1] |
牟新悦, 陈敏, 张琨, 等, 2017. 夏季大亚湾悬浮颗粒有机物碳、氮同位素组成及其物源指示[J]. 海洋学报, 39(2): 39-52.
|
|
MOU XINYUE, CHEN MIN, ZHANG KUN, et a1, 2017. Stable carbon and nitrogen isotopes as tracers of sources of suspended particulate organic matter in the Daya Bay in summer[J]. Acta Oceanologica Sinica, 39(2): 39-52 (in Chinese with English abstract).
|
[2] |
中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会, 2007. 海洋监测规范(GB17378. 5—2007)[S]. 北京: 中国标准出版社 (in Chinese).
|
[3] |
ANDRADE A C, FRÓES A, LOPES F A C, et al, 2017. Diversity of Microbial Carbohydrate-Active enzymes (CAZYmes) associated with freshwater and soil samples from Caatinga Biome[J]. Microbial Ecology, 74(1): 89-105.
doi: 10.1007/s00248-016-0911-9
pmid: 28070679
|
[4] |
ARNDT S, JORGENSEN B B, LAROWE D E, et al, 2013. Quantifying the degradation of organic matter in marine sediments: A review and synthesis[J]. Earth-Science Reviews, 123: 53-86.
doi: 10.1016/j.earscirev.2013.02.008
|
[5] |
ARNOSTI C, WIETZ M, BRINKHOFF T, et al, 2021. The Biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle[J]. Annual Review of Marine Science, 13: 81-108.
doi: 10.1146/marine.2021.13.issue-1
|
[6] |
BALMONTE J P, SIMON M, GIEBEL H A, et al, 2021. A sea change in microbial enzymes: Heterogeneous latitudinal and depth-related gradients in bulk water and particle-associated enzymatic activities from 30°S to 59°N in the Pacific Ocean[J]. Limnology and Oceanography, 66(9): 3489-3507.
doi: 10.1002/lno.v66.9
|
[7] |
BALTAR F, ZHAO ZIHAO, HERNDL G J, 2021. Potential and expression of carbohydrate utilization by marine fungi in the global ocean[J]. Microbiome, 9(1): 106.
doi: 10.1186/s40168-021-01063-4
pmid: 33975640
|
[8] |
BEN FRANCIS T, BARTOSIK D, SURA T, et al, 2021. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom[J]. Isme Journal, 15(8): 2336-2350.
doi: 10.1038/s41396-021-00928-8
pmid: 33649555
|
[9] |
BOEY J S, MORTIMER R, COUTURIER A, et al, 2021. Estuarine microbial diversity and nitrogen cycling increase along sand-mud gradients independent of salinity and distance[J]. Environmental Microbiology, 24(1): 50-65.
doi: 10.1111/1462-2920.15550
pmid: 33973326
|
[10] |
BOLGER A M, LOHSE M, USADEL B, 2014. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 30(15): 2114-2120.
doi: 10.1093/bioinformatics/btu170
pmid: 24695404
|
[11] |
BURD A B, JACKSON G A, 2009. Particle aggregation[J]. Annual Review of Marine Science, 1: 65-90.
pmid: 21141030
|
[12] |
CANTAREL B L, LOMBARD V, HENRISSAT B, 2012. Complex carbohydrate utilization by the healthy human microbiome[J]. Plos One, 7(6): e28742.
doi: 10.1371/journal.pone.0028742
|
[13] |
CHIRANIA P, HOLWERDA E K, GIANNONE R J, et al, 2022. Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids[J]. Nature Communications, 13(1): 3870.
doi: 10.1038/s41467-022-31433-x
pmid: 35790765
|
[14] |
COSTA O Y A, DE HOLLANDER M, PIJL A, et al, 2020. Cultivation-independent and cultivation-dependent metagenomes reveal genetic and enzymatic potential of microbial community involved in the degradation of a complex microbial polymer[J]. Microbiome, 8(1): 76.
doi: 10.1186/s40168-020-00836-7
pmid: 32482164
|
[15] |
DAVIS M P A, VAN DONGEN S, ABREU-GOODGER C, et al, 2013. Kraken: A set of tools for quality control and analysis of high-throughput sequence data[J]. Methods, 63(1): 41-49.
doi: 10.1016/j.ymeth.2013.06.027
pmid: 23816787
|
[16] |
DEDYSH S N, 2011. Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps[J]. Frontiers in Microbiology, 2: 00184.
|
[17] |
DONG HONG-PO, HONG YI-GUO, LU SONGHUI, et al, 2014. Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea[J]. Environmental Microbiology Reports, 6(6): 683-695.
doi: 10.1111/emi4.2014.6.issue-6
|
[18] |
FRANCIS B, URICH T, MIKOLASCH A, et al, 2021. North Sea spring bloom-associated Gammaproteobacteria fill diverse heterotrophic niches[J]. Environmental Microbiome, 16(1): 15.
doi: 10.1186/s40793-021-00385-y
pmid: 34404489
|
[19] |
GOWDA K, PING D, MANI M, et al, 2022. Genomic structure predicts metabolite dynamics in microbial communities[J]. Cell, 185(3): 530-546.
doi: 10.1016/j.cell.2021.12.036
|
[20] |
GUILLÉN D, SÁNCHEZ S, RODRÍGUEZ-SANOJA R, 2010. Carbohydrate-binding domains: multiplicity of biological roles[J]. Applied Microbiology and Biotechnology, 85(5): 1241-1249.
doi: 10.1007/s00253-009-2331-y
pmid: 19908036
|
[21] |
HOFFMANN K, BIENHOLD C, BUTTIGIEG P L, et al, 2020. Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities[J]. Isme Journal, 14(4): 1042-1056.
doi: 10.1038/s41396-020-0588-4
pmid: 31988474
|
[22] |
HOSHINO T, DOI H, URAMOTO G I, et al, 2020. Global diversity of microbial communities in marine sediment[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(44): 27587-27597.
|
[23] |
KOCH H, DURWALD A, SCHWEDER T, et al, 2019. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides[J]. Isme Journal, 13(1): 92-103.
doi: 10.1038/s41396-018-0252-4
pmid: 30116038
|
[24] |
LAZAR C S, BAKER B J, SEITZ K, et al, 2016. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments[J]. Environmental Microbiology, 18(4): 1200-1211.
doi: 10.1111/1462-2920.13142
pmid: 26626228
|
[25] |
LLOYD K G, SCHREIBER L, PETERSEN D G, et al, 2013. Predominant archaea in marine sediments degrade detrital proteins[J]. Nature, 496(7444): 215-218.
doi: 10.1038/nature12033
|
[26] |
MCGIVERN B B, TFAILY M M, BORTON M A, et al, 2021. Decrypting bacterial polyphenol metabolism in an anoxic wetland soil[J]. Nature Communications, 12(1): 2466.
doi: 10.1038/s41467-021-22765-1
pmid: 33927199
|
[27] |
MENG JUN, XU JUN, QIN DAN, et al, 2014. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses[J]. Isme Journal, 8(3): 650-659.
doi: 10.1038/ismej.2013.174
pmid: 24108328
|
[28] |
MORI T, KOYAMA G, KAWAGISHI H, et al, 2016. Effects of homologous expression of 1,4-Benzoquinone reductase and homogentisate 1,2-Dioxygenase genes on wood decay in hyper-lignin-degrading fungus Phanerochaete sordida YK-624[J]. Current Microbiology, 73(4): 512-518.
doi: 10.1007/s00284-016-1089-6
pmid: 27363425
|
[29] |
ORSI W D, RICHARDS T A, FRANCIS W R, 2018. Predicted microbial secretomes and their target substrates in marine sediment[J]. Nature Microbiology, 3(1): 32-37.
doi: 10.1038/s41564-017-0047-9
pmid: 29062087
|
[30] |
SICHERT A, CORZETT C H, SCHECHTER M S, et al, 2020. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan[J]. Nature Microbiology, 5(8): 1026-1039.
doi: 10.1038/s41564-020-0720-2
pmid: 32451471
|
[31] |
SMITH M W, HERFORT L, RIVERS A R, et al, 2019. Genomic signatures for sedimentary microbial utilization of phytoplankton detritus in a fast-flowing estuary[J]. Frontiers in Microbiology, 10: 02475.
doi: 10.3389/fmicb.2019.02475
|
[32] |
SMITS S A, LEACH J, SONNENBURG E D, et al, 2017. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania[J]. Science, 357(6353): 802-806.
doi: 10.1126/science.aan4834
pmid: 28839072
|
[33] |
SPRING S, BUNK B, SPRÖER C, et al, 2016. Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum[J]. Isme Journal, 10(12): 2801-2816.
doi: 10.1038/ismej.2016.84
pmid: 27300277
|
[34] |
TAYLOR J D, CUNLIFFE M, 2016. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance[J]. Isme Journal, 10(9): 2118-2128.
doi: 10.1038/ismej.2016.24
pmid: 26943623
|
[35] |
TEELING H, FUCHS B M, BECHER D, et al, 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom[J]. Science, 336(6081): 608-611.
doi: 10.1126/science.1218344
pmid: 22556258
|
[36] |
TEELING H, FUCHS B M, BENNKE C M, et al, 2016. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms[J]. Elife, 5: e11888.
doi: 10.7554/eLife.11888
|
[37] |
VAN VLIET D M, PALAKAWONG NA AYUDTHAYA S, DIOP S, et al, 2019. Anaerobic degradation of sulfated polysaccharides by two novel Kiritimatiellales Strainsisolated from Black Sea sediment[J]. Frontiers in Microbiology, 10: 253.
doi: 10.3389/fmicb.2019.00253
|
[38] |
VIDAL-MELGOSA S, SICHERT A, BEN FRANCIS T, et al, 2021. Diatom fucan polysaccharide precipitates carbon during algal blooms[J]. Nature Communications, 12(1): 1150.
doi: 10.1038/s41467-021-21009-6
|
[39] |
WANG XIAOQING, SHARP C E, JONES G M, et al, 2015. Stable-Isotope probing identifies uncultured Planctomycetes asprimary degraders of a complex heteropolysaccharide in soil[J]. Applied and Environmental Microbiology, 81(14): 4607-4615.
doi: 10.1128/AEM.00055-15
|
[40] |
WU JIAPENG, HONG YIGUO, LIU XIAOHAN, et al, 2021. Variations in nitrogen removal rates and microbial communities over sediment depth in Daya Bay, China[J]. Environmental Pollution, 286: 117267.
doi: 10.1016/j.envpol.2021.117267
|
[41] |
XING PENG, HAHNKE R L, UNFRIED F, et al, 2015. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom[J]. Isme Journal, 9(6): 1410-1422.
doi: 10.1038/ismej.2014.225
pmid: 25478683
|
[42] |
YU TIANTIAN, WU WEICHAO, LIANG WENYUE, et al, 2018. Growth of sedimentary Bathyarchaeota on lignin as an energy source[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(23): 6022-6027.
|
[43] |
ZHANG HAN, YOHE T, HUANG LE, et al, 2018. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation[J]. Nucleic Acids Research, 46(W1): W95-W101.
doi: 10.1093/nar/gky418
|
[44] |
ZHAO ZIHAO, BALTAR F, HERNDL G J, 2020. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes[J]. Science Advances, 6(16): eaaz4354.
doi: 10.1126/sciadv.aaz4354
|
[45] |
ZHENG RIKUAN, CAI RUINING, LIU RUI, et al, 2021. Maribellus comscasis sp. nov., a novel deep-sea Bacteroidetes bacterium, possessing a prominent capability of degrading cellulose[J]. Environmental Microbiology, 23(8): 4561-4575.
doi: 10.1111/1462-2920.15650
pmid: 34196089
|