[1] |
陈芬, 黎刚, 朱小畏, 等, 2023. 南海南沙海区沉积有机质分布特征及其指示意义[J]. 海洋地质与第四纪地质, 43(2): 45-54.
|
|
CHEN FEN, LI GANG, ZHU XIAOWE I, et al, 2023. Spatial distribution of organic matter in surface sediments from the Nansha sea area of the South China Sea and its implications for marine productivity and monsoon[J]. Marine Geology & Quaternary Geology, 43(2): 45-54 (in Chinese with English abstract).
|
[2] |
陈小花, 陈宗铸, 雷金睿, 等, 2022. 东寨港红树林中不同群落区表层土壤有机碳及其活性组分含量[J]. 湿地科学, 20(4): 499-506.
|
|
CHEN XIAOHUA, CHEN ZONGZHU, LEI JINRUI, et al, 2022. Contents of organic carbon and Its active components in surface soil of different community areas of mangrove forest in Dongzhai Port[J]. Wetland Science, 20(4): 499-506 (in Chinese with English abstract).
|
[3] |
葛晨东, 王颖, PEDERSEN T F, 等, 2007. 海南岛万泉河口沉积物有机碳、氮同位素的特征及其环境意义[J]. 第四纪研究, 27(5): 845-852.
|
|
GE CHENDONG, WANG YAN, PEDERSEN T F, et al, 2007. Variability of organic carbon isotope, nitrogen isotope, and C/N in the Wanquan River estuary, eastern Hainan island, China and its environmental implications[J]. Quaternary Sciences, 27(5): 845-852 (in Chinese with English abstract).
|
[4] |
郭卫东, 杨逸萍, 吴林兴, 等, 2002. 南沙渚碧礁生态系营养关系的稳定碳同位素研究[J]. 台湾海峡, 21(1): 94-101.
|
|
GUO WEIDONG, YANG YIPING, WU LINXING, et al, 2002. Stable carbon isotope study on trophic relationships of Zhubi reef ecosystem in Nansha Islands[J]. Journal of Oceanography in Taiwan Strait, 21(1): 94-101 (in Chinese with English abstract).
|
[5] |
韩永强, 夏嘉, 谭靖千, 等, 2020. 环雷州半岛近海表层沉积物有机碳分布及其控制因素分析[J]. 海洋科学, 44(3): 93-103.
|
|
HAN YONGQIANG, XIA JIA, TAN JINGQIAN, et al, 2020. Distribution and controlling factors of organic carbon in surface sediments of the coastal region surrounding Leizhou Peninsula[J]. Marine Sciences, 44(3): 93-103 (in Chinese with English abstract).
|
[6] |
蒋日进, 章守宇, 王凯, 等, 2014. 枸杞岛近岸海域食物网的稳定同位素分析[J]. 生态学杂志, 33(4): 930-938.
|
|
JIANG RIJIN, ZHANG SHOUYU, WANG KAI, et al, 2014. Stable isotope analysis of the offshore food web of Gouqi Island[J]. Chinese Journal of Ecology, 33(4): 930-938 (in Chinese with English abstract).
|
[7] |
蒋日进, 2015. 枸杞岛近岸海域食物网结构研究[D]. 上海: 上海海洋大学:79-84.
|
|
JIANG RIJIN, 2015. Research on the food web structure in the costal areas of Gouqi Island[D]. Shanghai: Shanghai Ocean University: 79-84 (in Chinese with English abstract).
|
[8] |
焦念志, 刘纪化, 石拓, 等, 2021. 实施海洋负排放践行碳中和战略[J]. 中国科学: 地球科学, 51(4): 632-643.
|
|
JIAO NIANZHI, LIU JIHUA, SHI TUO, et al, 2021. Deploying ocean negative carbon emissions to implement the carbon neutrality strategy[J]. Science China: Earth Sciences, 51(4): 632-643 (in Chinese with English abstract).
|
[9] |
李万会, 2006. 潮滩湿地沉积物中叶绿素a浓度的变化特征及其与沉积物特性间的关系初探[D]. 上海: 华东师范大学:20-27.
|
|
LI WANHUI, 2006. Primary study on relation between variation of chlorophyll a concentration and sediment grain size on an intertidal flat[D]. Shanghai: East China Normal University: 20-27 (in Chinese with English abstract).
|
[10] |
林武辉, 余锦萍, 余克服, 等, 2021. 北部湾涠洲岛海域沉积物中物质来源解析——来自元素、稳定同位素、放射性核素的证据[J]. 沉积学报, 39(3): 621-630.
|
|
LIN WUHUI, YU JINPING, YU KEFU, et al, 2021. Source identification in a 210pb-dated sediment core near southwest Weizhou Island, Beibu Gulf: evidence from elements, stable isotopes, and radionuclides[J]. Acta Sedimentologica Sinica, 39(3): 621-630 (in Chinese with English abstract).
|
[11] |
刘松林, 江志坚, 吴云超, 等, 2017. 海草床沉积物储碳机制及其对富营养化的响应[J]. 科学通报, 62(28-29): 3309-3320.
|
|
LIU SONGLIN, JIANG ZHIJIAN, WU YUNCHAO, et al, 2017. Mechanisms of sediment carbon sequestration in seagrass meadows and its responses to eutrophication[J]. Chinese Science Bulletin, 62(28-29): 3309-3320 (in Chinese with English abstract).
|
[12] |
陆旋, 2020. 南海西北部颗粒物碳、氮稳定同位素的研究[D]. 湛江: 广东海洋大学:43-44.
|
|
LU XUAN, 2020. Stable carbon and nitrogen isotopes of particulate matter in the northwest South China Sea[D]. Zhanjiang: Guangdong Ocean University: 43-44 (in Chinese with English abstract).
|
[13] |
曲宝晓, 宋金明, 袁华茂, 2018. 近百年来大亚湾沉积物有机质的沉积记录及对人为活动的响应[J]. 海洋学报, 40(10): 119-130.
|
|
QU BAOXIAO, SONG JINMING, YUAN HUAMAO, 2018. Sediment records and responses for anthropogenic activities of organic matter in the Daya Bay during recent one hundred years[J]. Haiyang Xuebao, 40(10): 119-130 (in Chinese with English abstract).
|
[14] |
石拓, 郑新庆, 张涵, 等, 2021. 珊瑚礁: 减缓气候变化的潜在蓝色碳汇[J]. 中国科学院院刊, 36(3): 270-278.
|
|
SHI TUO, ZHENG XINQING, ZHANG HAN, et al, 2021. Coral reefs: potential blue carbon sinks for climate change mitigation[J]. Bulletin of Chinese Academy of Sciences, 36(3): 270-278 (in Chinese with English abstract).
|
[15] |
宋金明, 赵卫东, 李鹏程, 等, 2003. 南沙珊瑚礁生态系的碳循环[J]. 海洋与湖沼, 34(6): 586-592.
|
|
SONG JINMING, ZHAO WEIDONG, LI PENGCHENG, et al, 2003. Carbon cycling in Nansha coral reef ecosystem, South China Sea[J]. Oceanologia et Limnologia Sinica, 34(6): 586-592 (in Chinese with English abstract).
|
[16] |
覃业曼, 2019. 西沙群岛琛航岛全新世珊瑚礁的发育过程及其记录的海平面变化[D]. 南宁: 广西大学:56-60.
|
|
QIN YEMAN, 2019. Holocene coral reef development at Chenhang Island, Xisha Islands, South China Sea and its recorded sea level changes[D]. Nanning: Guangxi University: 56-60 (in Chinese with English abstract).
|
[17] |
王国忠, 2001. 南海珊瑚礁区沉积学[M]. 北京: 海洋出版社: 157-170 (in Chinese).
|
[18] |
肖晓, 石要红, 冯秀丽, 等, 2016. 北部湾表层沉积物粒度分布规律及沉积动力分区[J]. 中国海洋大学学报, 46(5): 83-89.
|
|
XIAO XIAO, SHI YAOHONG, FENG XIULI, et al, 2016. Surface sediment characteristics and dynamics in Beibu gulf[J]. Periodical of Ocean University of China, 46(5): 83-89 (in Chinese with English abstract).
|
[19] |
徐步欣, 2022. 海南不同区域海草床底栖食物网表征分析[D]. 三亚: 海南热带海洋学院:33.
|
|
XU BUXIN, 2022. Characterization of benthic food webs in different seagrass beds regions of Hainan[D]. Sanya: Hainan Tropical Ocean University:33 (in Chinese with English abstract).
|
[20] |
许慎栋, 张志楠, 余克服, 等, 2021. 南海造礁珊瑚Favia palauensis营养方式的空间差异及其对环境适应性的影响[J]. 中国科学: 地球科学, 51(6): 927-940.
|
|
XU SHENDONG, ZHANG ZHINAN, YU KEFU, et al, 2021. Spatial variations in the trophic status of Favia palauensis corals in the South China Sea: insights into their different adaptabilities under contrasting environmental conditions[J]. Science China: Earth Sciences, 64(6): 839-852.
|
[21] |
荀涛, 胡鹏, 梅弢, 等, 2009. 西沙群岛珊瑚砂运动特性试验研究[J]. 水道港口, 30(4): 277-281.
|
|
XUN TAO, HU PENG, MEI TAO, et al, 2009. Study on movement characteristics of coral sands in Xisha Islands[J]. Journal of Waterway and Harbor, 30(4): 277-281 (in Chinese with English abstract).
|
[22] |
晏宏, 孙立广, 刘晓东, 等, 2010. 近50年来南海西沙群岛海域气候异常的ENSO效应[J]. 热带海洋学报, 29(5): 29-35.
|
|
YAN HONG, SUN LIGUANG, LIU XIAODONG, et al, 2010. Relationship between ENSO events and regional climate anomalies around the Xisha Islands during the last 50 years[J]. Journal of Tropical Oceanography, 29(5): 29-35 (in Chinese with English abstract).
doi: 10.11978/j.issn.1009-5470.2010.05.029
|
[23] |
杨熙, 余威, 何静, 等, 2022. 海南黎安港海草床碳储量评估[J]. 海洋科学, 46(11): 116-125.
|
|
YANG XI, YU WEI, HE JING, et al, 2022. Carbon storage in the seagrass beds of Li’an Bay, Hainan[J]. Marine Sciences, 46(11): 116-125 (in Chinese with English abstract).
|
[24] |
尹桂金, 严岩, 2012. 大亚湾冬季沉积物中叶绿素含量与分布[J]. 生态学杂志, 31(11): 2834-2840.
|
|
YIN GUIJIN, YAN YAN, 2012. Chlorophyll content and its distribution in the sediments of Daya Bay, South China in winter[J]. Chinese Journal of Ecology, 31(11): 2834-2840 (in Chinese with English abstract).
|
[25] |
尹洪洋, 2022. 三亚蜈支洲岛热带海洋牧场食物网研究及关键种分析[D]. 海口: 海南大学:84-85.
|
|
YIN HONGYANG, 2022. Study on food web and analysis of key species in tropical marine ranch of Wuzhizhou Island, Sanya[D]. Haikou: Hainan University: 84-85 (in Chinese with English abstract).
|
[26] |
余克服, 宋朝景, 赵焕庭, 1995. 西沙群岛永兴岛地貌与现代沉积特征[J]. 热带海洋学报, 14(2): 24-31.
|
|
YU KEFU, SONG CHAOJING, ZHAO HUANTING, 1995. The characters of geomorphology and modern sediments of Yongxing Island, Xisha Islands[J]. Tropic Oceanology, 14(2): 24-31 (in Chinese with English abstract).
|
[27] |
余克服, 2012. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学: 地球科学, 42(8): 1160-1172.
|
|
YU KEFU, 2012. Coral reefs in the South China Sea: their response to and records on past environmental changes[J]. Science China: Earth Sciences, 55(8): 1217-1229.
|
[28] |
余克服, 2018. 珊瑚礁科学概论[M]. 北京: 科学出版社:39-42.
|
|
YU KEFU, 2018. Introduction to the science of coral reefs[M]. Beijing: Science Press: 39-42 (in Chinese).
|
[29] |
赵美霞, 余克服, 张乔民, 2006. 珊瑚礁区的生物多样性及其生态功能[J]. 生态学报, 26(1): 186-194.
|
|
ZHAO MEIXIA, YU KEFU, ZHANG QIAOMIN, 2006. Review on coral reefs biodiversity and ecological function[J]. Acta Ecologica Sinica, 26(1): 186-194 (in Chinese with English abstract).
|
[30] |
赵强, 2010. 西沙群岛海域生物礁碳酸盐岩沉积学研究[D]. 青岛: 中国科学院研究生院(海洋研究所):37-44.
|
|
ZHAO QIANG, 2010. The sedimentary research about reef carbonatite in Xisha Islands Waters[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences: 37-44 (in Chinese with English abstract).
|
[31] |
朱文涛, 秦传新, 马鸿梅, 等, 2020. 大亚湾珊瑚礁生态系统简化食物网的稳定同位素[J]. 水产学报, 44(7): 1112-1123.
|
|
ZHU WENTAO, QIN CHUANXIN, MA HONGMEI, et al, 2020. Stable isotope analysis of simple food web in coral reef ecosystem of Daya Bay[J]. Journal of Fisheries of China, 44(7): 1112-1123 (in Chinese with English abstract).
|
[32] |
ALEMU I J B, YAAKUB S M, YANDO E S, et al, 2022. Geomorphic gradients in shallow seagrass carbon stocks[J]. Estuarine, Coastal and Shelf Science, 265: 107681.
|
[33] |
ALONGI D M, PFITZNER J, TROTT L A, 2006. Deposition and cycling of carbon and nitrogen in carbonate mud of the lagoons of Arlington and Sudbury Reefs, Great Barrier Reef[J]. Coral Reefs, 25(1): 123-143.
|
[34] |
ALONGI D M, TROTT L A, PFITZNER J, 2008. Biogeochemistry of inter-reef sediments on the northern and central Great Barrier Reef[J]. Coral Reefs, 27(2): 407-420.
|
[35] |
ATWOOD T B, MADIN E M P, HARBORNE A R, et al, 2018. Predators shape sedimentary organic carbon storage in a coral reef ecosystem[J]. Frontiers in Ecology and Evolution, 6: 110.
|
[36] |
BERGER W H, SMETACEK V, WEFER G, 1989. Ocean productivity and paleoproductivity—an overview[M]// BERGERW H, SMETACEKV, WEFERG, Productivity in the ocean-present and past. New York: Wiley: 1-34.
|
[37] |
BLANCKAERT A C A, REEF R, PANDOLFI J M, et al, 2020. Variation in the elemental stoichiometry of the coral-zooxanthellae symbiosis[J]. Coral Reefs, 39(4): 1071-1079.
|
[38] |
BORDOVSKIY O K, 1965. Sources of organic matter in marine basins[J]. Marine Geology, 3(1-2): 5-31.
|
[39] |
BOUDOURESQUE C F, MAYOT N, PERGENT G, 2006. The outstanding traits of the functioning of the Posidonia oceanica seagrass ecosystem[J]. Biologia Marina Mediterranea, 13(4): 109-113.
|
[40] |
BOUTTON T W, 1991. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments[M]// COLEMAND C, FRYB, Carbon isotope techniques. London: Academic Press: 173-185.
|
[41] |
BRIAND M J, BONNET X, GOIRAN C, et al, 2015. Major sources of organic matter in a complex coral reef lagoon: identification from isotopic signatures (δ13C and δ15N)[J]. PLoS One, 10(7): e0131555.
|
[42] |
BRUNSKILL G J, ZAGORSKIS I, PFITZNER J, 2002. Carbon burial rates in sediments and a carbon mass balance for the Herbert river region of the great barrier reef continental shelf, North Queensland, Australia[J]. Estuarine, Coastal and Shelf Science, 54(4): 677-700.
|
[43] |
CAO DI, CAO WENZHI, LIANG YING, et al, 2016. Nutrient variations and isotopic evidences of particulate organic matter provenance in fringing reefs, South China[J]. Science of The Total Environment, 566-567: 378-386.
|
[44] |
CARTAPANIS O, BIANCHI D, JACCARD S L, et al, 2016. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima[J]. Nature Communications, 7: 10796.
doi: 10.1038/ncomms10796
pmid: 26923945
|
[45] |
CHARPY-ROUBAUD C, SOURNIA A, 1990. The comparative estimation of phytoplanktonic and microphytobenthic production in the oceans[J]. Marine Microbial Food Webs, 4(1): 31-57.
|
[46] |
CHEN LIANG, YIN ZHENGXIN, TANG MENG, et al, 2022a. Distribution and genesis of organic carbon storage on the northern shelf of the South China Sea[J]. International Journal of Environmental Research and Public Health, 19(18): 11367.
|
[47] |
CHEN SHUNYANG, CHEN SHIQUAN, CHEN BIN, et al, 2022b. Implication of macroalgal bloom to soil organic carbon stock in Seagrass meadows - a case study in South Hainan, China[J]. Frontiers in Marine Science, 9: 870228.
|
[48] |
CHEN XIAOYAN, YU KEFU, HUANG XUEYONG, et al, 2019. Atmospheric nitrogen deposition increases the possibility of macroalgal dominance on remote coral reefs[J]. Journal of Geophysical Research: Biogeosciences, 124(5): 1355-1369.
|
[49] |
CROSSLAND C J, HATCHER B G, SMITH S V, 1991. Role of coral reefs in global ocean production[J]. Coral Reefs, 10(2): 55-64.
|
[50] |
DAVIS K L, COLEFAX A P, TUCKER J P, et al, 2021. Global coral reef ecosystems exhibit declining calcification and increasing primary productivity[J]. Communications Earth & Environment, 2(1): 105.
|
[51] |
DUARTE C M, MIDDELBURG J J, CARACO N, 2005. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2(1): 1-8.
|
[52] |
DUCE S, DECHNIK B, WEBSTER J M, et al, 2020. Mechanisms of spur and groove development and implications for reef platform evolution[J]. Quaternary Science Reviews, 231: 106155.
|
[53] |
ENGELS M S, FLETCHER C H, FIELD M E, et al, 2004. Holocene reef accretion: southwest Molokai, Hawaii, U. S. A[J]. Journal of Sedimentary Research, 74(2): 255-269.
|
[54] |
ESTES E R, POCKALNY R, D’HONDT S, et al, 2019. Persistent organic matter in oxic subseafloor sediment[J]. Nature Geoscience, 12(2): 126-131.
doi: 10.1038/s41561-018-0291-5
|
[55] |
FALKOWSKI P, SCHOLES R J, BOYLE E, et al, 2000. The global carbon cycle: a test of our knowledge of earth as a system[J]. Science, 290(5490): 291-296.
pmid: 11030643
|
[56] |
FEY P, PARRAVICINI V, LEBRETON B, et al, 2020. Sources of organic matter in an atypical phytoplankton rich coral ecosystem, Marquesas Islands: composition and properties[J]. Marine Biology, 167(7): 92.
|
[57] |
GAO YU, ZHOU JIAN, WANG LIMING, et al, 2019. Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China[J]. Global Ecology and Conservation, 17: e00575.
|
[58] |
GIRI C, OCHIENG E, TIESZEN L L, et al, 2011. Status and distribution of mangrove forests of the world using earth observation satellite data[J]. Global Ecology and Biogeography, 20(1): 154-159.
|
[59] |
GOVE J M, MCMANUS M A, NEUHEIMER A B, et al, 2016. Near-island biological hotspots in barren ocean basins[J]. Nature Communications, 7: 10581.
doi: 10.1038/ncomms10581
pmid: 26881874
|
[60] |
HATCHER B G, 1988. Coral reef primary productivity: a beggar's banquet[J]. Trends in Ecology & Evolution, 3(5): 106-111.
|
[61] |
HEIL C A, CHASTON K, JONES A, et al, 2004. Benthic microalgae in coral reef sediments of the southern Great Barrier Reef, Australia[J]. Coral Reefs, 23(3): 336-343.
|
[62] |
HUNG C C, GUO LAODONG, SCHULTZ JR G E, et al, 2003. Production and flux of carbohydrate species in the Gulf of Mexico[J]. Global Biogeochemical Cycles, 17(2): 1055.
|
[63] |
JANKOWSKA E, MICHEL L N, ZABORSKA A, et al, 2016. Sediment carbon sink in low-density temperate eelgrass meadows (Baltic Sea)[J]. Journal of Geophysical Research: Biogeosciences, 121(12): 2918-2934.
|
[64] |
KACZMARSKY L, RICHARDSON L L, 2011. Do elevated nutrients and organic carbon on Philippine reefs increase the prevalence of coral disease?[J]. Coral Reefs, 30(1): 253-257.
|
[65] |
KE ZHIXIN, TAN YEHUI, HUANG LIANGMIN, et al, 2018. Spatial distribution patterns of phytoplankton biomass and primary productivity in six coral atolls in the central South China Sea[J]. Coral Reefs, 37(3): 919-927.
|
[66] |
KEIL R, 2017. Anthropogenic forcing of carbonate and organic carbon preservation in marine sediments[J]. Annual Review of Marine Science, 9: 151-172.
doi: 10.1146/annurev-marine-010816-060724
pmid: 27814028
|
[67] |
KIENAST M, HIGGINSON M J, MOLLENHAUER G, et al, 2005. On the sedimentological origin of down-core variations of bulk sedimentary nitrogen isotope ratios[J]. Paleoceanography and Paleoclimatology, 20(2): PA2009.
|
[68] |
KÖSTER M, MEYER-REIL L A, 2001. Characterization of carbon and microbial biomass pools in shallow water coastal sediments of the Southern Baltic Sea (Nordrügensche Bodden)[J]. Marine Ecology Progress Series, 214: 25-41.
|
[69] |
KU H W, CHEN Y G, CHAN P S, et al, 2007. Paleo-environmental evolution as revealed by analysis of organic carbon and nitrogen: a case of coastal Taipei Basin in Northern Taiwan[J]. Geochemical Journal, 41(2): 111-120.
|
[70] |
KUMAR R R, PATTERSON EDWARD J K, JAIKUMAR M, 2010. Macro benthic community structure on Tuticorin coastal waters, Gulf of Mannar, south east coast of India[J]. World Journal of Fish and Marine Sciences, 2(1): 70-77.
|
[71] |
LAMB A L, WILSON G P, LENG M J, 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 75(1-4): 29-57.
|
[72] |
LI YAN, ZHOU QIANZHI, XU XIANGPO, et al, 2021. Source indication and geochemical significance of sedimentary organic matters from the Xisha Area, the South China Sea[J]. Molecules, 26(22): 6808.
|
[73] |
LORENZEN C J, 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations[J]. Limnology and Oceanography, 12(2): 343-346.
|
[74] |
MACREADIE P I, SERRANO O, MAHER D T, et al, 2017. Addressing calcium carbonate cycling in blue carbon accounting[J]. Limnology and Oceanography Letters, 2(6): 195-201.
|
[75] |
MARQUES J A, COSTA P G, MARANGONI L F B, et al, 2019. Environmental health in southwestern Atlantic coral reefs: geochemical, water quality and ecological indicators[J]. Science of The Total Environment, 651: 261-270.
|
[76] |
MCLAREN P, BOWLES D, 1985. The effects of sediment transport on grain-size distributions[J]. Journal of Sedimentary Research, 55(4): 457-470.
|
[77] |
MCLEOD E, CHMURA G L, BOUILLON S, et al, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 9(10): 552-560.
|
[78] |
MEYERS P A, 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 114(3-4): 289-302.
|
[79] |
MEYERS P A, 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 27(5-6): 213-250.
|
[80] |
MIYAJIMA T, KOIKE I, YAMANO H, et al, 1998. Accumulation and transport of seagrass-derived organic matter in reef flat sediment of Green Island, Great Barrier Reef[J]. Marine Ecology Progress Series, 175: 251-259.
|
[81] |
MIYAJIMA T, TANAKA Y, KOIKE I, et al, 2007. Evaluation of spatial correlation between nutrient exchange rates and benthic biota in a reef-flat ecosystem by GIS-assisted flow-tracking[J]. Journal of Oceanography, 63(4): 643-659.
|
[82] |
MONTAGGIONI L F, 2005. History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors[J]. Earth-Science Reviews, 71(1-2): 1-75.
|
[83] |
O'LEARY M H, 1988. Carbon Isotopes in Photosynthesis: fractionation techniques may reveal new aspects of carbon dynamics in plants[J]. BioScience, 38(5): 328-336.
|
[84] |
PAGE C E, LEGGAT W, EGAN S, et al, 2023. A coral disease outbreak highlights vulnerability of remote high-latitude lagoons to global and local stressors[J]. iScience, 26(3): 106205.
|
[85] |
PAGE H N, ANDERSSON A J, JOKIEL P L, et al, 2016. Differential modification of seawater carbonate chemistry by major coral reef benthic communities[J]. Coral Reefs, 35(4): 1311-1325.
|
[86] |
POST W M, PENG T H, EMANUEL W R, et al, 1990. The global carbon cycle[J]. American Scientist, 78(4): 310-326.
|
[87] |
PRAHL F G, BENNETT J T, CARPENTER R, 1980. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington[J]. Geochimica et Cosmochimica Acta, 44(12): 1967-1976.
|
[88] |
RASHEED M, AL-NAJJAR T, DAMHOUREYEH S, 2011. Distributions of pigments in reef sediments, contribution of phytoplankton to organic matter budget in coral reef[J]. Natural Science, 3(5): 344-350.
|
[89] |
RAVEN J A, JOHNSTON A M, KÜBLER J E, et al, 2002. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses[J]. Functional Plant Biology, 29(3): 355-378.
doi: 10.1071/PP01201
pmid: 32689482
|
[90] |
REMEIKAITĖ-NIKIENĖ N, LUJANIENĖ G, MALEJEVAS V, et al, 2016. Distribution and sources of organic matter in sediments of the south-eastern Baltic Sea[J]. Journal of Marine Systems, 157: 75-81.
|
[91] |
RIEGL B, GLYNN P W, WIETERS E, et al, 2015. Water column productivity and temperature predict coral reef regeneration across the Indo-Pacific[J]. Scientific Reports, 5: 8273.
doi: 10.1038/srep08273
pmid: 25653128
|
[92] |
ROZAIMI M, LAVERY P S, SERRANO O, et al, 2016. Long-term carbon storage and its recent loss in an estuarine Posidonia australis meadow (Albany, Western Australia)[J]. Estuarine, Coastal and Shelf Science, 171: 58-65.
|
[93] |
SAMPER-VILLARREAL J, LOVELOCK C E, SAUNDERS M I, et al, 2016. Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth[J]. Limnology and Oceanography, 61(3): 938-952.
|
[94] |
SANDERS C J, SMOAK J M, WATERS M N, et al, 2012. Organic matter content and particle size modifications in mangrove sediments as responses to sea level rise[J]. Marine Environmental Research, 77: 150-155.
doi: 10.1016/j.marenvres.2012.02.004
pmid: 22386513
|
[95] |
SCHRIMM M, BUSCAIL R, ADJEROUD M, 2004. Spatial variability of the biogeochemical composition of surface sediments in an insular coral reef ecosystem: Moorea, French Polynesia[J]. Estuarine, Coastal and Shelf Science, 60(3): 515-528.
|
[96] |
SEITER K, HENSEN C, SCHRÖTER J, et al, 2004. Organic carbon content in surface sediments—defining regional provinces[J]. Deep Sea Research Part I: Oceanographic Research Papers, 51(12): 2001-2026.
|
[97] |
SERRANO O, LAVERY P S, ROZAIMI M, et al, 2014. Influence of water depth on the carbon sequestration capacity of seagrasses[J]. Global Biogeochemical Cycles, 28(9): 950-961.
|
[98] |
SHEKHAR S, KUMARESAN S, CHAKRABORTY S, et al, 2019. Total organic carbon profile in water and sediment in coral reef ecosystem of Agatti Island, Lakshadweep Sea[J]. Indian Journal of Geo-Marine Sciences, 48(6): 936-942.
|
[99] |
SMITH S V, 1978. Coral-reef area and the contributions of reefs to processes and resources of the world's oceans[J]. Nature, 273(5659): 225-226.
|
[100] |
SOROKIN Y I, 1995a. Benthic microflora, periphyton and plant associations[M]//SOROKIN Y I. Coral reef ecology. Berlin, Heidelberg: Springer: 127-160.
|
[101] |
SOROKIN Y I, 1995b. Reef lime constructions[M]// SOROKINY I,Coral reef ecology. Berlin, Heidelberg: Springer: 4-33.
|
[102] |
STORLAZZI C D, BROWN E K, FIELD M E, et al, 2005. A model for wave control on coral breakage and species distribution in the Hawaiian Islands[J]. Coral Reefs, 24(1): 43-55.
|
[103] |
SUZUKI A, KAWAHATA H, 2003. Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions[J]. Tellus B, 55(2): 428-444.
|
[104] |
SUZUKI A, KAWAHATA H, 2004. Reef water CO2 system and carbon production of coral reefs: topographic control of system-level performance[M]// SHIYOMIM, KAWAHATAH, KOIZUMIH, et al. Global environmental change in the ocean and on land. Tokyo: Terraphub.
|
[105] |
TANAKA Y, MIYAJIMA T, WATANABE A, et al, 2011. Distribution of dissolved organic carbon and nitrogen in a coral reef[J]. Coral Reefs, 30(2): 533-541.
|
[106] |
THOMASSIN B A, CAUWET G, 1985. Organic matter distribution in sediments of the Tulear coral reef complexes[C]// Proceedings of the 5th international coral reef symposium. Tahiti: 377-382.
|
[107] |
TOTH L T, MACINTYRE I G, ARONSON R B, 2017. Holocene reef development in the eastern tropical pacific[M]// GLYNNP W, MANZELLOD P, ENOCHSI C, Coral reefs of the eastern tropical pacific. Dordrecht: Springer: 177-201.
|
[108] |
UMEZAWA Y, MIYAJIMA T, KOIKE I, 2008. Stable nitrogen isotope composition in sedimentary organic matter as a potential proxy of nitrogen sources for primary producers at a fringing coral reef[J]. Journal of Oceanography, 64(6): 899-909.
|
[109] |
VAUGHAN E J, WYNN P M, WILSON S K, et al, 2021. Precision and cost-effectiveness of bioindicators to estimate nutrient regimes on coral reefs[J]. Marine Pollution Bulletin, 170: 112606.
|
[110] |
WATANABE A, NAKAMURA T, 2019. Carbon dynamics in coral reefs[M]// KUWAET, HORIM, Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Singapore: Springer: 273-293.
|
[111] |
WERNER U, BIRD P, WILD C, et al, 2006. Spatial patterns of aerobic and anaerobic mineralization rates and oxygen penetration dynamics in coral reef sediments[J]. Marine Ecology Progress Series, 309: 93-105.
|
[112] |
WILD C, HUETTEL M, KLUETER A, et al, 2004. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem[J]. Nature, 428(6978): 66-70.
|
[113] |
WILD C, RASHEED M, JANTZEN C, et al, 2005. Benthic metabolism and degradation of natural particulate organic matter in carbonate and silicate reef sands of the Northern Red Sea[J]. Marine Ecology Progress Series, 298: 69-78.
|
[114] |
WYATT A S J, LOWE R J, HUMPHRIES S, et al, 2013. Particulate nutrient fluxes over a fringing coral reef: source-sink dynamics inferred from carbon to nitrogen ratios and stable isotopes[J]. Limnology and Oceanography, 58(1): 409-427.
|
[115] |
XIA JIA, HAN YONGQIANG, TAN JINGQIAN, et al, 2022. The characteristics of organic carbon in the offshore sediments surrounding the Leizhou Peninsula, China[J]. Frontiers in Earth Science, 10: 648337.
|
[116] |
YAN HONGQIANG, YU KEFU, SHI QI, et al, 2018. Air-sea CO2 fluxes and spatial distribution of seawater pCO2 in Yongle Atoll, northern-central South China Sea[J]. Continental Shelf Research, 165: 71-77.
|
[117] |
YANG HONGQIANG, YU KEFU, ZHAO MEIXIA, et al, 2015. Impact on the coral reefs at Yongle Atoll, Xisha Islands, South China Sea from a strong typhoon direct sweep: Wutip, September 2013[J]. Journal of Asian Earth Sciences, 114: 457-466.
|
[118] |
YANG W F, HUANG Y P, CHEN M, et al, 2011. Carbon and nitrogen cycling in the Zhubi coral reef lagoon of the South China Sea as revealed by 210Po and 210Pb[J]. Marine Pollution Bulletin, 62(5): 905-911.
|
[119] |
YOGESH KUMAR J S, GEETHA S, SORNARAJ R, 2013. Seasonal changes of sedimentation rates and sediment characteristics status in the gulf of Mannar Coral Island, India[J]. International Letters of Natural Sciences, 6: 8-24.
|
[120] |
YU FENGLING, ZONG YONGQIANG, LLOYD J M, et al, 2010. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 87(4): 618-630.
|
[121] |
YU JING, ZHANG HUA, 2017. Source apportionment of sediment organic material in a semi-enclosed sea using Bayesian isotopic mixing model[J]. Marine Pollution Bulletin, 119(1): 365-371.
doi: S0025-326X(17)30344-2
pmid: 28457556
|
[122] |
YU KEFU, ZHAO JIANXIN, WANG PINXIAN, et al, 2006. High-precision TIMS U-series and AMS 14C dating of a coral reef lagoon sediment core from southern South China Sea[J]. Quaternary Science Reviews, 25(17-18): 2420-2430.
|
[123] |
YUE YUANFU, YU KEFU, TAO SHICHEN, et al, 2019. 3500-year western Pacific storm record warns of additional storm activity in a warming warm pool[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 521: 57-71.
|
[124] |
ZHAO MEIXIA, YU KEFU, SHI QI, et al, 2016. The coral communities of Yongle atoll: status, threats and conservation significance for coral reefs in South China Sea[J]. Marine and Freshwater Research, 67(12): 1888-1896.
|
[125] |
ZHAO MEIXIA, YU KEFU, SHI QI, et al, 2017. Comparison of coral diversity between big and small atolls: a case study of Yongle atoll and Lingyang reef, Xisha Islands, central of South China Sea[J]. Biodiversity and Conservation, 26(5): 1143-1159.
|