1 蔡德陵, 王荣, 毕洪生, 2001. 渤海生态系统的营养关系: 碳同位素研究的初步结果[J]. 生态学报, 21(8): 1354-1359.
2 蔡德陵, 李红燕, 唐启升, 等. 2005. 黄东海生态系统食物网连续营养谱的建立: 来自碳氮稳定同位素方法的结果[J]. 中国科学, 35 (2): 123-130.
3 陈绍勇, 周伟华, 吴云华, 等. 2001. 南沙珊瑚礁生态系生物体中 δ 13 C的分布[J]. 海洋科学, 25 (6): 4-7.
4 崔莹. 2012. 基于稳定同位素和脂肪酸组成的中国近海生态系统物质流动研究[D]. 上海: 华东师范大学: 6-10.
5 郭卫东, 杨逸萍, 吴林兴, 等.2002.南沙渚碧礁生态系营养关系的稳定碳同位素研究[J]. 台湾海峡, 21(1): 94-101.
6 金鑫, 李超伦, 刘梦坛.2012. 基于脂肪酸标记法和碳氮稳定同位素比值法的东海水母常见种的食性分析[J]. 海洋与湖沼, 43(3): 486-493.
7 柯志新, 黄良民, 徐军, 等. 2012. 大亚湾冬季不同粒级浮游生物的氮稳定同位素特征及其与生物量的关系[J]. 生态学报, 32(22): 7102-7108.
8 刘华雪, 徐军, 李纯厚, 等. 2015. 南海南部浮游动物稳定同位素研究—氮稳定同位素[J]. 热带海洋学报, 34(2): 32-38.
9 万炜, 胡建英, 安立会, 等. 2005. 利用稳定氮和碳同位素分析渤海湾食物网主要生物种的营养层次[J]. 科学通报, 50(7): 708-712.
10 BĂNARU D, CARLOTTI F, BARANI A, et al. 2013. Seasonal variation of stable isotope ratios of size-fractionated zooplankton in the Bay of Marseilles (NW Mediterranean Sea) [J]. Journal of Plankton Research, 36(1): 145-156.
11 CHEN M R, LIU H B, CHEN B Z. 2012. Effects of dietary essential fatty acids on reproduction rates of a subtropical calanoid copepod, Acartiaerythraea [J]. Marine Ecology Progress Series, 455: 95-110.
12 ESPINASSE B, VIVIEN M H, TIANO M, et al. 2014. Patterns of variations in C and N stable isotope ratios in size-fractionated zooplankton in the Gulf of Lion, NW Mediterranean Sea [J]. Journal of Plankton Research, 36(5): 1204-1215.
13 FANELLI E, CARTES J E, PAPIOL V, 2011. Food web structure of deep-sea macrozooplankton and micronekton off the Catalan slope: Insight from stable isotopes [J]. Journal of Marine Systems, 87: 79-89.
14 FRY B, QUIONES R B, 1994. Biomass spectra and stable isotope indicators of trophic level in zooplankton of the northwest Atlantic [J]. Marine Ecology Progress Series, 112: 201-204.
15 HANNIDES C C S, POPP B N, CHOY C A, et al. 2013. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope perspective [J]. Limnol Oceanogr, 58(6): 1931-1946.
16 KOPPELMANN R, SCHNACK R B, MOBIUS J, et al. 2009.Trophic relationships of zooplankton in the eastern Mediterranean based on stable isotope measurements [J]. Journal of Plankton Research, 31: 669-686.
17 LAAKMANN S, AUEL H, 2010. Longitudinal and vertical trends in stable isotope signatures ( δ 13 C and δ 15 N) of omnivorous and carnivorous copepods across the South Atlantic Ocean [J]. Marine Biology, 157: 463-471.
18 LEGENDRE L, RIVKIN R B. 2008. Planktonic food webs: Microbial hub approach [J]. Marine Ecology Progress Series, 365: 289-309.
19 RAU G H, TEYSSIE J L, RASSOULZADEGAN F, et al. 1990. 13 C/ 12 C and 15 N/ 14 N variations among size-fractionated marine particles: Implications for their origin and trophic relationships [J]. Marine Ecology Progress Series, 59: 33-38.
20 ROLFF C, 2000. Seasonal variation in C and N of size-fractionated plankton at a coastal station in the northern Baltic proper [J]. Marine Ecology Progress Series, 203: 47-65.
21 SHOLTO-DOUGLAS A D, FIELD J G, JAMES A G, et al. 1991. 13 C/ 12 C and 15 N/ 14 N isotope ratios in the Southern Benguela Ecosystem: indicators of food web relationships among different size-classes of plankton and pelagic fish differences between fish muscle and bone collagen tissues [J]. Marine Ecology Progress Series, 78: 23-31.
22 ZANDEN J M V, RASMUSSEN B J. 1999. Primary consumer δ 13 C and δ 15 N and the trophic position of aquatic consumer[J]. Ecology, 80(4): 1395-1404. |