[1] |
陈天然, 郑兆勇, 莫少华, 等, 2013. 涠洲岛滨珊瑚中的生物侵蚀及其环境指示意义[J]. 科学通报, 58(17): 1574-1582.
|
|
CHEN TIANRAN, ZHENG ZHAOYONG, MO SHAOHUA, et al, 2013. Bioerosion in Porites corals at Weizhou Island and its environmental significance[J]. Chinese Science Bulletin, 58(17): 1574-1582 (in Chinese with English abstract).
|
[2] |
何精科, 黄振鹏, 2019. 广西涠洲岛珊瑚分布状况研究[J]. 海洋开发与管理, 36(1): 57-62.
|
|
HE JINGKE, HUANG ZHENPENG, 2019. The distribution of corals in Weizhou Island, Guangxi[J]. Ocean Development and Management, 36(1): 57-62 (in Chinese with English abstract).
|
[3] |
黄晖, 马斌儒, 练健生, 等, 2009. 广西涠洲岛海域珊瑚礁现状及其保护策略研究[J]. 热带地理, 29(4): 307-312, 318.
|
|
HUANG HUI, MA BINRU, LIAN JIANSHENG, et al, 2009. Status and conservation strategies of the coral reef in Weizhou Island, Guangxi[J]. Tropical Geography, 29(4): 307-312, 318 (in Chinese with English abstract).
|
[4] |
黄晓煦, 徐轶肖, 张腾, 等, 2021. 涠洲岛海域营养盐变化特征与评价[J]. 广西科学, 28(2): 130-135.
|
|
HUANG XIAOXU, XU YIXIAO, ZHANG TENG, et al, 2021. Characteristics and evaluation of nutrient salt variation in the sea area of the Weizhou Island[J]. Guangxi Sciences, 28(2): 130-135 (in Chinese with English abstract).
|
[5] |
金昱昕, 陈天然, 孟庆山, 等, 2017. 单轴抗压强度揭示南海珊瑚骨骼结构的差异[J]. 热带海洋学报, 36(2): 33-39.
doi: 10.11978/2016071
|
|
JIN YUXIN, CHEN TIANRAN, MENG QINGSHAN, et al, 2017. Difference of coral skeletal structure revealed by compressive strength measurements[J]. Journal of Tropical Oceanography, 36(2): 33-39 (in Chinese with English abstract).
doi: 10.11978/2016071
|
[6] |
梁文, 黎广钊, 张春华, 等, 2010. 20年来涠洲岛珊瑚礁物种多样性演变特征研究[J]. 海洋科学, 34(12): 78-87.
|
|
LIANG WEN, LI GUANGZHAO, ZHANG CHUNHUA, et al, 2010. Long-term changes of the coral reef biodiversity at the Weizhou Island, Beihai, Guangxi[J]. Marine Sciences, 34(12): 78-87 (in Chinese with English abstract).
|
[7] |
梁文, 张春华, 叶祖超, 等, 2011. 广西涠洲岛造礁珊瑚种群结构的空间分布[J]. 生态学报, 31(1): 39-46.
|
|
LIANG WEN, ZHANG CHUNHUA, YE ZUCHAO, et al, 2011. Spatial pattern of scleractinian coral population structure in Weizhou Island, Beihai, Guangxi[J]. Acta Ecologica Sinica, 31(1): 39-46 (in Chinese with English abstract).
|
[8] |
汤超莲, 周雄, 郑兆勇, 等, 2013. 未来海平面上升对涠洲岛珊瑚礁的可能影响[J]. 热带地理, 33(2): 119-123, 140.
|
|
TANG CHAOLIAN, ZHOU XIONG, ZHENG ZHAOYONG, et al, 2013. Possible effects of sea level rise in the future on the coral reef in Weizhou Island[J]. Tropical Geography, 33(2): 119-123, 140 (in Chinese with English abstract).
|
[9] |
张文静, 郑兆勇, 张婷, 等, 2020. 1960-2017年北部湾珊瑚礁区海洋热浪增强原因分析[J]. 海洋学报, 42(5): 41-48.
|
|
ZHANG WENJING, ZHENG ZHAOYONG, ZHANG TING, et al, 2020. Strengthened marine heatwaves over the Beibu Gulf coral reef regions from 1960 to 2017[J]. Haiyang Xuebao, 42(5): 41-49 (in Chinese with English abstract).
|
[10] |
赵宽, 张婷, 陈天然, 2019. 南海北部滨珊瑚骨骼微生物侵蚀[J]. 热带海洋学报, 38(6): 74-79.
doi: 10.11978/2019006
|
|
ZHAO KUAN, ZHANG TING, CHEN TIANRAN, 2019. Micro-bioerosion in Porites corals in the northern South China Sea[J]. Journal of Tropical Oceanography, 38(6): 74-79 (in Chinese with English abstract).
|
[11] |
周浩郎, 黎广钊, 2014. 涠洲岛珊瑚礁健康评估[J]. 广西科学院学报, 30(4): 238-247.
|
|
ZHOU HAOLANG, LI GUANGZHAO, 2014. Assessment on the health of coral reefs at Weizhou Island[J]. Journal of Guangxi Academy of Sciences, 30(4): 238-247 (in Chinese with English abstract).
|
[12] |
ALVARADO J J, GRASSIAN B, CANTERA-KINTZ J R, et al, 2017. Coral reef bioerosion in the eastern tropical pacific[M]// GLYNNP W, MANZELLOD P, ENOCHSI C, Coral reefs of the eastern tropical Pacific: persistence and loss in a dynamic environment. Dordrecht: Springer: 369-403.
|
[13] |
BARKLEY H C, COHEN A L, GOLBUU Y, et al, 2015. Changes in coral reef communities across a natural gradient in seawater pH[J]. Science Advances, 1(5): e1500328.
|
[14] |
BERGSMA G S, 2009. Tube-dwelling coral symbionts induce significant morphological change in Montipora[J]. Symbiosis, 49(3): 143-150.
|
[15] |
BURT J A, CAMP E F, ENOCHS I C, et al, 2020. Insights from extreme coral reefs in a changing world[J]. Coral Reefs, 39(3): 495-507.
|
[16] |
CHAZOTTES V, CAMPION-ALSUMARD T L, PEYROT-CLAUSADE M, 1995. Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (Moorea, French Polynesia)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 113(2-4): 189-198.
|
[17] |
CHEN TIANRAN, LI SHU, YU KEFU, 2013. Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development[J]. Coral Reefs, 32(1): 101-108.
|
[18] |
CHEN TIANRAN, COBB K M, ROFF G, et al, 2018. Coral-derived western pacific tropical sea surface temperatures during the last millennium[J]. Geophysical Research Letters, 45(8): 3542-3549.
|
[19] |
CHEN TIANRAN, LI SHU, ZHAO JIANXIN, et al, 2021. Uranium-thorium dating of coral mortality and community shift in a highly disturbed inshore reef (Weizhou Island, northern South China Sea)[J]. Science of the Total Environment, 752: 141866.
|
[20] |
DAVIES P J, HOPLEY D, 1983a. Growth fabrics and growth rates of Holocene reefs in the great barrier reef[J]. BMR Journal of Australian Geology & Geophysics, 8(3): 237-251.
|
[21] |
DAVIES P J, HUTCHINGS P A, 1983b. Initial colonization, erosion and accretion of coral substrate: experimental results, lizard island, great barrier reef[J]. Coral Reefs, 2(1): 27-35.
|
[22] |
DECARLO T M, COHEN A L, BARKLEY H C, et al, 2015. Coral macrobioerosion is accelerated by ocean acidification and nutrients[J]. Geology, 43(1): 7-10.
|
[23] |
DEE S, CUTTLER M, CARTWRIGHT P, et al, 2021. Encrusters maintain stable carbonate production despite temperature anomalies among two inshore island reefs of the Pilbara, western Australia[J]. Marine Environmental Research, 169: 105386.
|
[24] |
DENIS V, MEZAKI T, TANAKA K, et al, 2013. Coverage, diversity, and functionality of a high-latitude coral community (Tatsukushi, Shikoku Island, Japan)[J]. PLoS One, 8(1): e54330.
|
[25] |
DOS REIS V M, KAREZ C S, MARIATH R, et al, 2016. Carbonate production by benthic communities on shallow coralgal reefs of Abrolhos Bank, Brazil[J]. PLoS One, 11(4): e0154417.
|
[26] |
EAKIN C M, 1996. Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982-1983 El Nino at Uva Island in the eastern Pacific[J]. Coral Reefs, 15(2): 109-119.
|
[27] |
ENOCHS I C, TOTH L T, KIRKLAND A, et al, 2021. Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific[J]. Ecological Monographs, 91(4): e01482.
|
[28] |
FINE M, LOYA Y, 2002. Endolithic algae: an alternative source of photoassimilates during coral bleaching[J]. Proceedings of the Royal Society B: Biological Sciences, 269(1497): 1205-1210.
pmid: 12065035
|
[29] |
GLYNN P W, MANZELLO D P, 2015. Bioerosion and coral reef growth: a dynamic balance[M]// BIRKELAND C. Coral reefs in the anthropocene. Dordrecht: Springer: 67-97.
|
[30] |
GORDON M, LUMLEY T, 2022. [2023-01-03] Forestplot: Advanced forest plot using 'grid' graphics[EB/OL].
|
[31] |
HUGHES T P, 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef[J]. Science, 265(5178): 1547-1551.
pmid: 17801530
|
[32] |
HUGHES T P, HUANG HUI, YOUNG M A L, 2013. The wicked problem of China’s disappearing coral reefs[J]. Conservation Biology, 27(2): 261-269.
|
[33] |
HUGHES T P, BARNES M L, BELLWOOD D R, et al, 2017. Coral reefs in the Anthropocene[J]. Nature, 546(7656): 82-90.
|
[34] |
HUTCHINGS P A, 1983. Bioerosion of coral substrates[M]// BAKERJ J, CARTERR M, SAMMARCOP W, et al. Proceedings: inaugural, great barrier reef conference Townsville. Townsville: James Cook University Press: 113-119.
|
[35] |
HUTCHINGS P, PEYROT-CLAUSADE M, OSNORNO A, 2005. Influence of land runoff on rates and agents of bioerosion of coral substrates[J]. Marine Pollution Bulletin, 51(1-4): 438-447.
pmid: 15757742
|
[36] |
JACKSON J B C, KIRBY M X, BERGER W H, et al, 2001. Historical overfishing and the recent collapse of coastal ecosystems[J]. Science, 293(5530): 629-637.
pmid: 11474098
|
[37] |
JANUCHOWSKI-HARTLEY F A, BAUMAN A G, MORGAN K M, et al, 2020. Accreting coral reefs in a highly urbanized environment[J]. Coral Reefs, 39(3): 717-731.
|
[38] |
KIENE W E, HUTCHINGS P A, 1994. Bioerosion experiments at Lizard Island, Great Barrier Reef[J]. Coral Reefs, 13(2): 91-98.
|
[39] |
KLEYPAS J A, MCMANUS J W, MEÑEZ L A B, 1999. Environmental limits to coral reef development: Where do we draw the line?[J]. American Zoologist, 39(1): 146-159.
|
[40] |
LANGE I D, PERRY C T, ALVAREZ-FILIP L, 2020. Carbonate budgets as indicators of functional reef “health”: a critical review of data underpinning census-based methods and current knowledge gaps[J]. Ecological Indicators, 110: 105857.
|
[41] |
LE GRAND H M, FABRICIUS K E, 2011. Relationship of internal macrobioeroder densities in living massive Porites to turbidity and chlorophyll on the Australian Great Barrier Reef[J]. Coral Reefs, 30(1): 97-107.
|
[42] |
LEWIS J B, 1998. Reproduction, larval development and functional relationships of the burrowing, spionid polychaete Dipolydora armata with the calcareous hydrozoan Millepora complanata[J]. Marine Biology, 130(4): 651-662.
|
[43] |
LUBARSKY K A, SILBIGER N J, DONAHUE M J, 2018. Effects of submarine groundwater discharge on coral accretion and bioerosion on two shallow reef flats[J]. Limnology and Oceanography, 63(4): 1660-1676.
|
[44] |
MALLELA J, PERRY C T, 2007. Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica[J]. Coral Reefs, 26(1): 129-145.
|
[45] |
MANZELLO D P, KLEYPAS J A, BUDD D A, et al, 2008. Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(30): 10450-10455.
|
[46] |
MARLOW J, SMITH D, WERORILANG S, et al, 2018. Sedimentation limits the erosion rate of a bioeroding sponge[J]. Marine Ecology, 39(1): e12483.
|
[47] |
MASHHADI H, SEYFABADI J, REZAI MARNANI H, et al, 2021. Bioerosion and its relationship with skeletal density of Platygyra daedalea and Porites harrisoni in Larak Island, Persian Gulf[J]. Marine Ecology, 42(6): e12686.
|
[48] |
MO SHAOHUA, CHEN TIANRAN, CHEN ZESHENG, et al, 2022. Marine heatwaves impair the thermal refugia potential of marginal reefs in the northern South China Sea[J]. Science of the Total Environment, 825: 154100.
|
[49] |
MOLINA-HERNÁNDEZ A, GONZÁLEZ-BARRIOS F J, PERRY C T, et al, 2020. Two decades of carbonate budget change on shifted coral reef assemblages: are these reefs being locked into low net budget states?[J]. Proceedings of the Royal Society B: Biological Sciences, 287(1940): 20202305.
|
[50] |
MUMBY P J, HASTINGS A, EDWARDS H J, 2007. Thresholds and the resilience of Caribbean coral reefs[J]. Nature, 450(7166): 98-101.
|
[51] |
MURPHY G N, PERRY C T, CHIN P, et al, 2016. New approaches to quantifying bioerosion by endolithic sponge populations: applications to the coral reefs of Grand Cayman[J]. Coral Reefs, 35(3): 1109-1121.
|
[52] |
OSORNO A, PEYROT-CLAUSADE M, HUTCHINGS P A, 2005. Patterns and rates of erosion in dead Porites across the Great Barrier Reef (Australia) after 2 years and 4 years of exposure[J]. Coral Reefs, 24(2): 292-303.
|
[53] |
PARI N, PEYROT-CLAUSADE M, HUTCHINGS P A, 2002. Bioerosion of experimental substrates on high islands and atoll lagoons (French Polynesia) during 5 years of exposure[J]. Journal of Experimental Marine Biology and Ecology, 276(1-2): 109-127.
|
[54] |
PERRY C T, LARCOMBE P, 2003. Marginal and non-reef-building coral environments[J]. Coral Reefs, 22(4): 427-432.
|
[55] |
PERRY C T, HEPBURN L J, 2008. Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events[J]. Earth-Science Reviews, 86(1-4): 106-144.
|
[56] |
PERRY C T, EDINGER E N, KENCH P S, et al, 2012. Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire[J]. Coral Reefs, 31(3): 853-868.
|
[57] |
PERRY C T, MURPHY G N, KENCH P S, et al, 2013. Caribbean-wide decline in carbonate production threatens coral reef growth[J]. Nature Communications, 4: 1402.
doi: 10.1038/ncomms2409
pmid: 23360993
|
[58] |
PERRY C T, MURPHY G N, KENCH P S, et al, 2014. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential[J]. Proceedings of the Royal Society B: Biological Sciences, 281(1796): 20142018.
|
[59] |
PERRY C T, STENECK R S, MURPHY G N, et al, 2015. Regional-scale dominance of non‐framework building corals on Caribbean reefs affects carbonate production and future reef growth[J]. Global Change Biology, 21(3): 1153-1164.
|
[60] |
PERRY C T, ALVAREZ-FILIP L, GRAHAM N A J, et al, 2018. Loss of coral reef growth capacity to track future increases in sea level[J]. Nature, 558(7710): 396-400.
|
[61] |
REYES-NIVIA C, DIAZ-PULIDO G, KLINE D, et al, 2013. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons[J]. Global Change Biology, 19(6): 1919-1929.
|
[62] |
RICE M M, MAHER R L, CORREA A M S, et al, 2020. Macroborer presence on corals increases with nutrient input and promotes parrotfish bioerosion[J]. Coral Reefs, 39(2): 409-418.
|
[63] |
ROIK A, RÖTHIG T, POGOREUTZ C, et al, 2018. Coral reef carbonate budgets and ecological drivers in the central Red Sea-a naturally high temperature and high total alkalinity environment[J]. Biogeosciences, 15(20): 6277-6296.
|
[64] |
SANGSAWANG L, CASARETO B E, OHBA H, et al, 2017. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea[J]. Royal Society Open Science, 4(12): 171201.
|
[65] |
SCHMIDT G M, RICHTER C, 2013. Coral growth and bioerosion of Porites lutea in response to large amplitude internal waves[J]. PLoS One, 8(12): e73236.
|
[66] |
SCOTT P J B, RISK M J, 1988. The effect of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites Lobata[J]. Coral Reefs, 7(3): 145-151.
|
[67] |
SILBIGER N, GUADAYOL Ò, THOMAS F, et al, 2014. Reefs shift from net accretion to net erosion along a natural environmental gradient[J]. Marine Ecology Progress Series, 515: 33-44.
|
[68] |
SILBIGER N J, GUADAYOL Ò, THOMAS F I M, et al, 2016. A novel μCT analysis reveals different responses of bioerosion and secondary accretion to environmental variability[J]. PLoS One, 11(4): e0153058.
|
[69] |
TAGHON G L, NOWELL A R M, JUMARS P A, 1980. Induction of suspension feeding in spionid polychaetes by high particulate fluxes[J]. Science, 210(4469): 562-564.
pmid: 17841404
|
[70] |
TITLYANOV E A, KIYASHKO S I, TITLYANOVA T V, et al, 2008. δ13C and δ15N values in reef corals Porites lutea and P. cylindrica and in their epilithic and endolithic algae[J]. Marine Biology, 155(4): 353-361.
|
[71] |
TORTOLERO-LANGARICA J J A, SALAZAR-SILVA P, MORALES-RUIZ E, et al, 2022. The effect of polychaetes infestation on calcification rates and morphological changes in reef-building coral Porites lobata[J]. Symbiosis, 86(3): 337-344.
|
[72] |
TRIBOLLET A, GOLUBIC S, 2005. Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia[J]. Coral Reefs, 24(3): 422-434.
|
[73] |
TURICCHIA E, ABBIATI M, BETTUZZI M, et al, 2022. Bioconstruction and bioerosion in the northern adriatic coralligenous reefs quantified by X-ray computed tomography[J]. Frontiers in Marine Science, 8: 790869.
|
[74] |
VERBRUGGEN H, TRIBOLLET A, 2011. Boring algae[J]. Current Biology, 21(21): R876-R877.
|
[75] |
WISSHAK M, SCHÖNBERG C H L, FORM A, et al, 2012. Ocean acidification accelerates reef bioerosion[J]. PLoS One, 7(9): e45124.
|
[76] |
WIZEMANN A, NANDINI S D, STUHLDREIER I, et al, 2018. Rapid bioerosion in a tropical upwelling coral reef[J]. PLoS One, 13(9): e0202887.
|
[77] |
YEUNG Y H, XIE J Y, ZHAO YU, et al, 2021. Rapid external erosion of coral substrate in subtropical Hong Kong waters[J]. Marine Pollution Bulletin, 169: 112495.
|
[78] |
YU WANJUN, WANG WENHUAN, YU KEFU, et al, 2019. Rapid decline of a relatively high latitude coral assemblage at Weizhou Island, northern South China Sea[J]. Biodiversity and Conservation, 28(14): 3925-3949.
|