[1] |
李超伦, 孙松, 张光涛, 等, 2000. 南极普里兹湾临近海域夏季纽鳃樽对浮游植物的摄食研究[J]. 极地研究, 12(2): 97-104.
|
|
LI CHAOLUN, SUN SONG, ZHANG GUANGTAO, et al, 2000. Grazing of Salp Thompsoni on phytoplankton in summer in the Prydz Bay, Antarctica[J]. Polar Research, 12(2): 97-104 (in Chinese with English abstract).
|
[2] |
黄邦钦, 邱勇, 陈纪新, 2019. 海洋生物泵研究的若干新进展与展望[J]. 应用海洋学学报, 38(4): 474-483.
|
|
HUANG BANGQIN, QIU YONG, CHEN JIXIN, 2019. Progress and prospects on the study of marine biological pump[J]. Journal of Applied Oceanography, 38(4): 474-483 (in Chinese with English abstract).
|
[3] |
谭激扬, 黄良民, 谭烨辉, 等, 2013. 水团对吕宋海峡浮游植物群落结构的影响[J]. 海洋学报, 35(6): 178-189.
|
|
TAN JIYANG, HUANG LIANGMIN, TAN YEHUI, et al, 2013. The influences of water-mass on phytoplankton community structure in the Luzon Strait[J]. Acta Oceanologica Sinica, 35(6): 178-189 (in Chinese with English abstract).
|
[4] |
张金标, 黄将修, 连光山, 2003a. 台湾南湾区秋末冬初海樽类的种类组成和数量分布[J]. 海洋通报, 22(6): 9-16.
|
|
ZHANG JINBIAO, HUANG JIANGXIU, LIAN GUANGSHAN, 2003. Species composition and quantitative distribution of Thaliacea in late autumn and early winter in Nanwan, Taiwan[J]. Marine Ocean Bulletin, 22(6): 9-16 (in Chinese with English abstract).
|
[5] |
张金标, 连光山, 王云龙, 等, 2003b. 台湾海峡东部海域海樽类被囊动物的分布[J]. 台湾海峡, 22(3): 279-285.
|
|
ZHANG JINBIAO, LIAN GUANGSHAN, WANG YUNLONG, et al, 2003. Distribution of Thaliacea in the eastern Taiwan Strait[J]. Journal of Oceanography in Taiwan Strait, 22(3): 279-285 (in Chinese with English abstract).
|
[6] |
张武昌, 张芳, 王克, 2001. 海洋浮游动物粪便通量[J]. 地球科学进展, 16(1): 113-119.
|
|
ZHANG WUCHANG, ZHANG FANG, WANG KE, 2001. Marine zooplankton fecal pellets flux[J]. Advances in Earth Science, 16(1): 113-119 (in Chinese with English abstract).
doi: 10.11867/j.issn.1001-8166.2001.01.0113
|
[7] |
ACUÑA J L, DEIBEL D, SAUNDERS P A, et al, 2002. Phytoplankton ingestion by appendicularians in the North Water[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 49(22-23): 5101-5115.
|
[8] |
ALLDREDGE A L, MADIN L P, 1982. Pelagic tunicates: Unique herbivores in the marine plankton[J]. Bioscience, 32(8): 655-663.
doi: 10.2307/1308815
|
[9] |
ANDERSEN V, 1998. Salp and Pyrosomid blooms and their importance in biogeochemical cycles[M]//BONE Q (Ed.), The biology of Pelagic Tunicates. New York, USA: Oxford University Press: 125-137.
|
[10] |
ANDERSEN V, SARDOU J, 1992. The diel migrations and vertical distributions of zooplankton and micronekton in the Northwestern Mediterranean Sea. 1. Euphausiids, mysids, decapods and fishes[J]. Journal of Plankton Research, 14(8): 1129-1154.
doi: 10.1093/plankt/14.8.1129
|
[11] |
ANGEL M V, 1989. Vertical profiles of pelagic communities in the vicinity of the Azores Front and their implications to deep ocean ecology[J]. Progress in Oceanography, 22(1): 1-46.
doi: 10.1016/0079-6611(89)90009-8
|
[12] |
ARCHER S K, KAHN A S, LEYSS P, et al, 2018. Pyrosome consumption by benthic organisms during blooms in the Northeast Pacific and Gulf of Mexico[J]. Ecology, 99(4): 981-984.
doi: 10.1002/ecy.2097
pmid: 29372927
|
[13] |
ATES R M L, 2017. Benthic scavengers and predators of Jellyfish, material for a review[J]. Plankton and Benthos Research, 12(1): 71-77.
doi: 10.3800/pbr.12.71
|
[14] |
ATKINSON A, SIEGEL V, PAKHOMOV E, 2004. Long-term decline in krill stock and increase in Salps within the Southern Ocean[J]. Nature, 432: 100-103.
doi: 10.1038/nature02996
|
[15] |
ATKINSON A, HILL S L, PAKHOMOV E A, et al, 2017. KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926—2016[J]. Earth System Science Data, 9: 193-210.
doi: 10.5194/essd-9-193-2017
|
[16] |
BATISTIĆ M, RADE G, NENAD J, et al, 2019. Bloom of the heterotrophic dinoflagellate Noctiluca scintillans (Macartney) Kofoid & Swezy, 1921 and tunicates Salpa fusiformis Cuvier, 1804 and Salpa maxima Forskål, 1775 in the open southern Adriatic in 2009[J]. Journal of the Marine Biological Association of the United Kingdom, 99(5): 1049-1058.
doi: 10.1017/S0025315418001029
|
[17] |
BILLETT D S M, BETT B J, JACOBS C L, 2006. Mass deposition of jellyfish in the Deep Arabian Sea[J]. Limnology and Oceanography, 51: 2077-2083.
doi: 10.4319/lo.2006.51.5.2077
|
[18] |
BONE Q Ed, 1998. The biology of Pelagic Tunicates[M]. New York, USA: Oxford University Press: 340.
|
[19] |
BONE Q, BRACONNOT J C, CARRE C, et al, 1997. On the filter-feeding of doliolum (Tunicata: Thaliacea)[J]. Journal of Experimental Marine Biology and Ecology, 214(1-2): 179-193.
doi: 10.1016/S0022-0981(97)00001-4
|
[20] |
BONE Q, CARRÉ C, CHANG P, 2003. Tunicate feeding filters[J]. Journal of the Marine Biological Association of the United Kingdom, 83(5): 907-919.
doi: 10.1017/S002531540300804Xh
|
[21] |
BOUQUET J M, TROEDSSON C, NOVAC A, et al, 2018. Increased fitness of a key appendicularian zooplankton species under warmer, acidified seawater conditions[J]. PLoS One, 13(1): e0190625.
doi: 10.1371/journal.pone.0190625
|
[22] |
BRISEÑO-AVENA C, PRAIRIE J C, FRANKS P J S, et al, 2020a. Comparing vertical distributions of Chl-a fluorescence, marine snow, and taxon-specific zooplankton in relation to density using high-resolution optical measurements[J]. Frontiers in Marine Science, 7: 602.
doi: 10.3389/fmars.2020.00602
|
[23] |
BRISEÑO-AVENA C, SCHMID M S, SWIECA K, et al, 2020b. Three-dimensional cross-shelf zooplankton distributions off the Central Oregon Coast during anomalous oceanographic conditions[J]. Progress in Oceanography, 188: 102436.
doi: 10.1016/j.pocean.2020.102436
|
[24] |
BRODEUR R I, BOLDT J, FLOSTRAND L, et al, 2018. An unusual gelatinous plankton event in the NE Pacific: the great Pyrosome bloom of 2017[J]. PICES Press, 26(1): 22-27.
|
[25] |
BUESSELER K O, BOYD P W, BLACK E E, et al, 2020. Metrics that matter for assessing the ocean biological carbon pump[J]. Proceedings of the National Academy of Sciences, 117(18): 9679-9687.
doi: 10.1073/pnas.1918114117
|
[26] |
CACCHIONE D A, ROWE G T, MALAHOFF A, 1978. Submersible investigation of the outer Hudson submarine canyon[M]//DANIEL JEAN STANLEY, GILBERT KELLING, Sedimentation in submarine canyons, fans and trenches. Stroudsburg, PA: Dowden, Hutchinson & Ross.
|
[27] |
CARON D A, MADIN L P, COLE J J, 1989. Composition and degradation of salp fecal pellets: Implications for vertical flux in oceanic environments[J]. Journal of Marine Research, 47(4): 829-850.
doi: 10.1357/002224089785076118
|
[28] |
CHAE J, CHOI H W, LEE W J, et al, 2008. Distribution of a pelagic tunicate, Salpa fusiformis in warm surface current of the eastern Korean waters and its impingement on cooling water intakes of Uljin nuclear power plant[J]. Journal of Environmental Biology, 29(4): 585-590.
|
[29] |
CHI XUPENG, DIERKING J, HOVING H J, et al, 2021. Tackling the jelly web: Trophic ecology of gelatinous zooplankton in oceanic food webs of the eastern tropical Atlantic assessed by stable isotope analysis[J]. Limnology and Oceanography, 66(2): 289-305.
doi: 10.1002/lno.v66.2
|
[30] |
CHIBA S, ISHIMARU T, HOSIE G W, et al, 1999. Population structure change of Salpa Thompsoni from Austral mid-summer to autumn[J]. Polar Biology. 22(5): 341-349.
doi: 10.1007/s003000050427
|
[31] |
CONDON R H, DUARTE C M, PITT K A, et al, 2013. Recurrent jellyfish blooms are a consequence of global oscillations[J]. Proceedings of the National Academy of Sciences, 110(3): 1000-1005.
doi: 10.1073/pnas.1210920110
|
[32] |
CONLEY K R, BEN-TAL A, JACOBI Y, et al, 2018. Not-so-simple sieving by ascidians: Re-examining particle capture at the mesh and organismal scales[J]. Marine Biology, 165(3): 1-14.
doi: 10.1007/s00227-017-3259-x
|
[33] |
CROCKER KENNETH M, ALICE L, ALLDREDGE, et al, 1991. Feeding rates of the doliolid, Dolioletta gegenbauri, on diatoms and bacteria[J]. Journal of Plankton Research, 13(1): 77-82.
doi: 10.1093/plankt/13.1.77
|
[34] |
DADON-PILOSOF A, CONLEY K R, JACOBI Y, et al, 2017. Surface properties of SAR11 bacteria facilitate grazing avoidance[J]. Nature microbiology, 2(12): 1608-1615.
doi: 10.1038/s41564-017-0030-5
|
[35] |
DADON-PILOSOF A, LOMBARD F, GENIN A, et al, 2019. Prey taxonomy rather than size determines Salp diets[J]. Limnology and Oceanography, 64(5): 1996-2010.
doi: 10.1002/lno.v64.5
|
[36] |
DÉCIMA M, STUKEL M R, LÓPEZ-LÓPEZ L, et al, 2019. The unique ecological role of pyrosomes in the Eastern Tropical Pacific[J]. Limnology and Oceanography, 64(2): 728-743.
doi: 10.1002/lno.11071
|
[37] |
DEIBEL D, 1982. Laboratory determined mortality, fecundity and growth rates of Thalia democratica, Forskal and Dolioletta gegenbauri, Uljanin (Tunicata, Thaliacea)[J]. Journal of Plankton Research, 4(1): 143-153.
doi: 10.1093/plankt/4.1.143
|
[38] |
DEIBEL D, 1985. Blooms of the pelagic tunicate, Dolioletta gegenbauri : Are they associated with Gulf Stream frontal eddies?[J]. Journal of Marine Research, 43(1): 211-236.
doi: 10.1357/002224085788437307
|
[39] |
DEIBEL D, 1998. The abundance, distribution, and ecological impact of doliolids[M]//BONE Q (Ed.), The biology of Pelagic Tunicates. New York, USA: Oxford University Press: 171-186.
|
[40] |
DEIBEL D, LOWEN B, 2012. A review of the life cycles and life history adaptations of pelagic tunicates to environmental conditions[J]. Ices Journal of Marine Science, 69(3): 358-369.
doi: 10.1093/icesjms/fsr159
|
[41] |
DEIBEL D, PAFFENHÖFER G A, 2009. Predictability of patches of neritic Salps and doliolids (Tunicata, Thaliacea)[J]. Journal of plankton research, 31(12): 1571-1579.
doi: 10.1093/plankt/fbp091
|
[42] |
DUBISCHAR C D, BATHMANN U V, 1997. Grazing impact of copepods and Salps on phytoplankton in the Atlantic sector of the Southern ocean[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 44(1-2): 415-433.
|
[43] |
DURHAM W M, CLIMENT E, BARRY M, et al, 2013. Turbulence drives microscale patches of motile phytoplankton[J]. Nature communications, 4(1): 1-7.
|
[44] |
EDWARDS P K, LEUNG B, 2009. Re-evaluating eradication of nuisance species: invasion of the tunicate, Ciona intestinalis[J]. Frontiers in Ecology and the Environment, 7(6): 326-332.
doi: 10.1890/070218
|
[45] |
EVERETT J D, BAIRD M E, SUTHERS I M, 2011. Three-dimensional structure of a swarm of the Salp Thalia democratica within a cold-core eddy off southeast Australia[J]. Journal of Geophysical Research: Oceans, 116(C12): C12046
|
[46] |
FRISCHER M E, LAMBOLEY L M, WALTERS T L, et al, 2021. Selective feeding and linkages to the microbial food web by the doliolid Dolioletta gegenbauri[J]. Limnology and Oceanography, 66(5): 1993-2010.
doi: 10.1002/lno.v66.5
|
[47] |
GASPARINI F, BALLARIN L, 2018. Reproduction in Tunicates[M]//MICHAEL K, Skinner, encyclopedia of reproduction (Second Edition). Amsterdam, Netherlands: Elsevier Inc..
|
[48] |
GIBSON D M, PAFFENHÖFER G A, 2000. Feeding and growth rates of the doliolid, Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea)[J]. Journal of Plankton Research, 22(8): 1485-1500.
doi: 10.1093/plankt/22.8.1485
|
[49] |
GIBSON D M, PAFFENHÖFER G A, 2002. Asexual reproduction of the doliolid, Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea)[J]. Journal of Plankton Research, 24(7): 703-712.
doi: 10.1093/plankt/24.7.703
|
[50] |
GODEAUX J E A, BONE Q, BRACONNOT J C, 1998. Anatomy of Thaliacea[M]//BONE Q (Ed.), The biology of Pelagic Tunicates. New York, USA: Oxford University: 1-24.
|
[51] |
GREER A T, BOYETTE A D, CRUZ V J, et al, 2020. Contrasting fine - scale distributional patterns of zooplankton driven by the formation of a diatom - dominated thin layer[J]. Limnology and Oceanography, 65(9): 2236-2258.
doi: 10.1002/lno.v65.9
|
[52] |
HARBISON G R, GILMER R W, 1976. The feeding rates of the pelagic tunicate Pegea confederata and two other Salps[J]. Limnology and Oceanography, 21(4): 517-528.
doi: 10.4319/lo.1976.21.4.0517
|
[53] |
HAYS GRAEME C, THOMAS K DOYLE, JONATHAN D R, 2018. A paradigm shift in the trophic importance of jellyfish?[J]. Trends in Ecology & Evolution, 33(11): 874-884.
doi: 10.1016/j.tree.2018.09.001
|
[54] |
HENSCHKE N, BOWDEN D A, EVERETT J D, et al, 2013. Salp-falls in the Tasman Sea: a major food input to deep sea benthos[J]. Marine Ecology Progress Series, 491: 165-175.
doi: 10.3354/meps10450
|
[55] |
HENSCHKE N, CHEREL Y, COTTE C, et al, 2021. Size and stage specific patterns in Salpa thompsoni vertical migration[J]. Journal of Marine Systems, 222: 103587.
doi: 10.1016/j.jmarsys.2021.103587
|
[56] |
HENSCHKE N, EVERETT J D, BAIRD M E, et al, 2011. Distribution of life history stages of the Salp Thalia democratica in shelf waters during a spring bloom[J]. Marine Ecology Progress Series, 430: 49-62.
doi: 10.3354/meps09090
|
[57] |
HENSCHKE N, EVERETT J D, SUTHERS I M, 2016. An observation of two oceanic Salp swarms in the Tasman Sea: Thetys vagina and Cyclosalpa affinis[J]. Marine Biodiversity Records, 9(1): 1-5.
doi: 10.1186/s41200-016-0002-0
|
[58] |
HENSCHKE N, PAKHOMOV E A, KWONG L E, et al, 2019. Large vertical migrations of Pyrosoma atlanticum play an important role in active carbon transport[J]. Journal of Geophysical Research: Biogeosciences, 124(5): 1056-1070.
doi: 10.1029/2018JG004918
|
[59] |
HERON A C, BENHAM E E, 1985. Life history parameters as indicators of growth rate in three Salp populations[J]. Journal of Plankton Research, 7(3): 365-379.
doi: 10.1093/plankt/7.3.365
|
[60] |
HOLLAND L Z, 2016. Tunicates[J]. Current Biology, 26(4): R146-R152.
doi: 10.1016/j.cub.2015.12.024
|
[61] |
HOPCROFT R R, ROFF J C, 1995. Zooplankton growth rates: Extraordinary production by the larvacean Oikopleura dioica in tropical waters[J]. Journal of plankton research, 17(2): 205-220.
doi: 10.1093/plankt/17.2.205
|
[62] |
HOPCROFT R R, ROFF J C, BOUMAN H A, 1998. Zooplankton growth rates: The larvaceans Appendicularia, Fritillaria and Oikopleura in tropical waters[J]. Journal of plankton research, 20(3): 539-555.
doi: 10.1093/plankt/20.3.539
|
[63] |
HUSKIN I, ELICES M J, ANADON R, 2003. Salp distribution and grazing in saline intrusion off NW Spain[J]. Journal of Marine Systems, 42(1-2): 1-11.
doi: 10.1016/S0924-7963(03)00061-7
|
[64] |
ISHAK N H A, MOTOKI K, MIYAMOTO H, et al, 2022. Basin-scale distribution of Salps and doliolids in the transition region of the North Pacific Ocean in summer: Drivers of bloom occurrence and effect on the pelagic ecosystem[J]. Progress in Oceanography, 204: 102793.
doi: 10.1016/j.pocean.2022.102793
|
[65] |
IVERSEN M H, PAKHOMOV E A, HUNT B P V, et al, 2017. Sinkers or floaters? Contribution from Salp pellets to the export flux during a large bloom event in the Southern Ocean[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 138: 116-125.
|
[66] |
JASPERS C, ACUÑA J L, BRODEUR R D, 2015. Interactions of gelatinous zooplankton within marine food webs[J]. Journal of Plankton Research, 37(5): 985-988.
doi: 10.1093/plankt/fbv068
|
[67] |
KANNATHASAN A, EZHILARASAN P, SAMPATHKUMAR P, et al, 2012. Seasonal distribution of pelagic tunicates with influence of the environmental parameters in the Parangipettai, southeast coast of India[J]. Advances in Applied Science Research, 3(6): 3714-3721.
|
[68] |
KATECHAKIS A, STIBOR H, SOMMER U, et al, 2004. Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean)[J]. Journal of Plankton Research, 26(6): 589-603.
doi: 10.1093/plankt/fbh062
|
[69] |
KÖSTER M, PAFFENHÖFER G-A, 2017. How efficiently can doliolids (Tunicata, Thaliacea) utilize phytoplankton and their own fecal pellets?[J]. Journal of Plankton Research, 39(2): 305-315.
|
[70] |
LAMB J B, VAN DE WATER J A J M, BOURNE D G, et al, 2017. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates[J]. Science, 355(6326): 731-733.
doi: 10.1126/science.aal1956
pmid: 28209895
|
[71] |
LANDRY M R, PETERSON W K, FAGERNESS V L, 1994. Mesozooplankton grazing in the Southern California Bight. Ⅰ. Population abundances and gut pigment contents[J]. Marine Ecology Progress Series, 115: 55-71.
doi: 10.3354/meps115055
|
[72] |
LAVANIEGOS B E, OHMAN M D, 2003. Long-term changes in pelagic tunicates of the California Current[J]. Deep Sea Research Part Ⅱ, 50(14-16): 2473-2498.
|
[73] |
LAVANIEGOS B E, OHMAN M D, 2007. Coherence of long-term variations of zooplankton in two sectors of the California Current System[J]. Progress in Oceanography, 75(1): 42-69.
doi: 10.1016/j.pocean.2007.07.002
|
[74] |
LAWRENCE J, TÖPPER J, PETELENZ-KURDZIEL E, et al, 2018. Viruses on the menu: The Appendicularian Oikopleura dioica efficiently removes viruses from seawater[J]. Limnology and Oceanography, 63(1): 244-253.
|
[75] |
LEBRATO M, DE MENDES P J, STEINBERG D K, et al, 2013. Jelly biomass sinking speed reveals a fast carbon export mechanism[J]. Limnology and Oceanography, 58(3): 1113-1122.
doi: 10.4319/lo.2013.58.3.1113
|
[76] |
LEBRATO M, JONES D O B, 2009. Mass deposition event of Pyrosoma Atlanticum carcasses off Ivory coast (West Africa)[J]. Limnology and Oceanography, 54(4): 1197-1209.
doi: 10.4319/lo.2009.54.4.1197
|
[77] |
LEBRATO M, PAHLOW M, FROST J R, et al, 2019. Sinking of gelatinous zooplankton biomass increases deep carbon transfer efficiency globally[J]. Global Biogeochemical Cycles, 33(12): 1764-1783.
doi: 10.1029/2019GB006265
|
[78] |
LEBRATO M, MOLINERO J, MYCHEK-LONDER J G, et al, 2022. Gelatinous carbon impacts benthic megafaunal communities in a continental margin 2022[J]. Frontiers in Marine Science, 9: 902674
doi: 10.3389/fmars.2022.902674
|
[79] |
LEBRATO M, MOLINERO J C, CARTES J E, et al, 2013. Sinking jelly-carbon unveils potential environmental variability along a continental margin[J]. PLoS ONE, 8(12): e82070.
doi: 10.1371/journal.pone.0082070
|
[80] |
LEBRATO M, PITT K A, SWEETMAN A K, et al, 2012. Jelly-falls historic and recent observations: A synthesis to drive future research directions[J]. Hydrobiologia, 690: 227-245.
doi: 10.1007/s10750-012-1046-8
|
[81] |
LI KAIZHI, YIN JIANQIANG, HUANG LIANGMIN, et al, 2011. Distribution and abundance of Thaliaceans in the northwest continental shelf of South China Sea, with response to environmental factors driven by monsoon[J]. Continental Shelf Research, 31(9): 979-989.
doi: 10.1016/j.csr.2011.03.004
|
[82] |
LIAN XIPING, TAN YEHUI, HUANG LIANGMIN, et al, 2017. Striking taxonomic differences in summer zooplankton in the northern South China Sea: implication of an extreme cold anomaly[J]. Acta Oceanologica Sinica, 36(10): 87-96.
|
[83] |
LIAO ZHENHENG, HSIEH H Y, LO W T, 2013. Influence of monsoon-driven hydrographic features on Thaliacean distribution in waters around Taiwan, western North Pacific Ocean[J]. Zoological Studies, 52(1): 1-14.
doi: 10.1186/1810-522X-52-1
|
[84] |
LICANDRO P, IBANEZ F, ETIENNE M, 2006. Long-term fluctuations (1974—1999) of the Salps Thalia democratia and Salpa fusiformis in the nordwestern Mediterranean Sea: relationships with hydroclimatic variability[J]. Limnology and Oceanography, 51(4): 1832-1848.
doi: 10.4319/lo.2006.51.4.1832
|
[85] |
LOMBARD F, LEGENDRE L, PICHERAL M, et al, 2010. Prediction of ecological niches and carbon export by Appendicularians using a new multispecies ecophysiological model[J]. Marine Ecology Progress Series, 398: 109-125.
doi: 10.3354/meps08273
|
[86] |
LUCAS C H, JONES D O B, HOLLYHEAD C J, et al, 2014. Gelatinous zooplankton biomass in the global oceans: Geographic variation and environmental drivers[J]. Global Ecology and Biogeography, 23(7): 701-714.
doi: 10.1111/geb.2014.23.issue-7
|
[87] |
LUDKA A, 2012. Jellyfish-Like organisms (Salps) shut down California power plant[OL]. World News. https://abcnews.go.com/blogs/technology/2012/04/jellyfish-like-organisms-shut-down-california-power-plant.
|
[88] |
LUO J Y, CONDON R H, STOCK C A, et al, 2020. Gelatinous zooplankton-mediated carbon flows in the global oceans: A data-driven modeling study[J]. Global Biogeochemical Cycles, 34(9):e2020GB006704.
|
[89] |
LUO J Y, GRASSIAN B, TANG D, et al, 2014. Environmental drivers of the fine-scale distribution of a gelatinous zooplankton community across a mesoscale front[J]. Marine Ecology Progress Series, 510: 129-149.
doi: 10.3354/meps10908
|
[90] |
LUO J Y, STOCK C A, HENSCHKE N, et al, 2022. Global ecological and biogeochemical impacts of pelagic tunicates[J]. Progress in Oceanography, 205: 102822.
doi: 10.1016/j.pocean.2022.102822
|
[91] |
LÜSKOW F, PAKHOMOV E A, STUKEL M R, et al, 2020. Biology of Salpa thompsoni at the Chatham Rise, New Zealand: demography, growth, and diel vertical migration[J]. Marine Biology, 167(12): 1-18.
doi: 10.1007/s00227-019-3618-x
|
[92] |
LYLE J T, COWEN R K, SPONAUGLE S, et al, 2022. Fine-scale vertical distribution and diel migrations of Pyrosoma atlanticum in the northern California Current[J]. Journal of Plankton Research, 44(2): 288-302.
doi: 10.1093/plankt/fbac006
|
[93] |
MADHUPRATAP M, DEVASSY V P, SREEKUMARAN-NAIR S R, et al, 1980. Swarming of pelagic tunicates associated with phytoplankton bloom in the Bay of Bengal[J]. Indian Marine Science, 9: 69-71.
|
[94] |
MADIN L P, KREMER P, WIEBE P H, et al, 2006. Periodic swarms of the salp Salpa aspera in the slope water off the NE United States: Biovolume, vertical migration, grazing, and vertical flux[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 53(5): 804-819.
|
[95] |
MARTIN B, ROLF K, PAWEL K, 2017. Ecological relevance of Salps and doliolids in the northern Benguela Upwelling System[J]. Journal of Plankton Research, 39(2): 290-304,
|
[96] |
MÉNARD F, DALLOT S, THOMAS G, et al, 1994. Temporal fluctuations of two Mediterranean Salp populations from 1967 to 1990 - Analysis of the influence of environmental variables using a Markov chain model[J]. Marine Ecology Progress Series, 104: 139-152.
doi: 10.3354/meps104139
|
[97] |
METFIES K, NICOLAUS A, VON HARBOU L, et al, 2014. Molecular analyses of gut contents: Elucidating the feeding of co-occurring Salps in the Lazarev Sea from a different perspective[J]. Antarctic Science, 26(5): 545-553.
doi: 10.1017/S0954102014000157
|
[98] |
SARTOR P, SBRANA M, REALE B, 2003. Impact of the deep sea trawl fishery on demersal communities of the northern Tyrrhenian Sea (Western Mediterranean)[J]. Journal of the Northwest Atlantic Fishery Science, 31: 275-284.
doi: 10.2960/J.v31.a21
|
[99] |
MONTES-HUGO M, DONEY S C, DUCKLOW H W, et al, 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic peninsula[J]. Science, 323: 1470-1473.
doi: 10.1126/science.1164533
|
[100] |
MOURITSEN L T, RICHARDSON K, 2003. Vertical microscale patchiness in nano- and micro-plankton distributions in a stratified estuary[J]. Journal of plankton research, 25(7): 783-797.
doi: 10.1093/plankt/25.7.783
|
[101] |
O'LOUGHLIN J H, BERNARD K S, DALY E A, et al, 2020. Implications of Pyrosoma atlanticum range expansion on phytoplankton standing stocks in the Northern California Current[J]. Progress in Oceanography, 188: 102424.
doi: 10.1016/j.pocean.2020.102424
|
[102] |
PAFFENHÖFER G A, 2013. A hypothesis on the fate of blooms of doliolids (Tunicata, Thaliacea)[J]. Journal of plankton research, 35(4): 919-924.
doi: 10.1093/plankt/fbt048
|
[103] |
PAFFENHÖFER G -A, ATKINSON L P, LEE T N, et al, 1995. Distribution and abundance of Thaliaceans and copepods off the southeastern U. S. A. during winter[J]. Continental Shelf Research, 15(2-3): 255-280.
doi: 10.1016/0278-4343(94)E0004-6
|
[104] |
PAFFENHÖFER G A, GIBSON D M, 1999. Determination of generation time and asexual fecundity of doliolids (Tunicata, Thaliacea)[J]. Journal of Plankton Research, 21(6): 1183-1189.
doi: 10.1093/plankt/21.6.1183
|
[105] |
PAFFENHÖFER G -A, KÖSTER M, 2005. Digestion of diatoms by planktonic copepods and doliolids[J]. Marine Ecology Progress Series, 297: 303-310.
doi: 10.3354/meps297303
|
[106] |
PAKHOMOV E A, HENSCHKE N, HUNT B P V, et al, 2019. Utility of salps as a baseline proxy for food web studies[J]. Journal of plankton research, 41(1): 3-11.
doi: 10.1093/plankt/fby051
|
[107] |
PATONAI K, EL-SHAFFEY H, PAFFENHÖFER G A, 2011. Sinking velocities of fecal pellets of doliolids and calanoid copepods[J]. Journal of plankton research, 33(7): 1146-1150.
doi: 10.1093/plankt/fbr011
|
[108] |
PERISSINOTTO R, MAYZAUD P, NICHOLS P D, et al, 2007. Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean[J]. Marine Ecology Progress Series, 330: 1-11.
doi: 10.3354/meps330001
|
[109] |
PERISSINOTTO R, PAKHOMOV E A, 1998. Contribution of Salps to carbon flux of marginal ice zone of the Lazarev Sea, Southern Ocean[J]. Marine Biology, 131(I): 25-32.
|
[110] |
PENG QIHUA, XIE SHANGPING, WANG DONGXIAO, et al, 2022. Surface warming-induced global acceleration of upper ocean currents[J]. Science Advences, 8(16): eabj8394.
|
[111] |
PHILLIPS B, KREMER P, MADIN L P, 2009. Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean[J]. Marine Biology, 156(3): 455-467.
doi: 10.1007/s00227-008-1099-4
|
[112] |
PINCHUK A I, BATTEN S D, STRASBURGER W W, 2021. Doliolid (Tunicata, Thaliacea) blooms in the southeastern Gulf of Alaska as a result of the recent marine heat wave of 2014-2016[J]. Frontiers in Marine Science, 8: 159.
|
[113] |
PIONTEK J, LUNAU M, HÄNDEL N, et al, 2010. Acidification increases microbial polysaccharide degradation in the ocean[J]. Biogeosciences, 7(5): 1615-1624.
doi: 10.5194/bg-7-1615-2010
|
[114] |
ROE H, BILLETT D, LAMPITT R, 1990. Benthic / midwater interactions on the Madeira Abyssal Plain; evidence for biological transport pathways[J]. Progress in Oceanography, 24(1-4): 127-140.
doi: 10.1016/0079-6611(90)90025-W
|
[115] |
SATO R, TANAKA Y, ISHIMARU T, 2003. Species-specific house productivity of Appendicularians[J]. Marine Ecology Progress Series, 259: 163-172.
doi: 10.3354/meps259163
|
[116] |
SCHEINBERG R D, LANDRY M R, CALBET A, 2005. Grazing of two common Appendicularians on the natural prey assemblage of a tropical coastal ecosystem[J]. Marine Ecology Progress Series, 294: 201-212.
doi: 10.3354/meps294201
|
[117] |
SCHRAM J B, SORENSEN H L, BRODEUR R D, et al, 2020. Abundance, distribution, and feeding ecology of Pyrosoma atlanticum in the Northern California Current[J]. Marine Ecology Progress Series, 651: 97-110.
doi: 10.3354/meps13465
|
[118] |
SILVER M W, BRULAND K W, 1981. Differential feeding and fecal pellet composition of Salps and pteropods, and the possible origin of the deep-water flora and olive-green “Cells”[J]. Marine biology, 62: 263-273.
doi: 10.1007/BF00397693
|
[119] |
SMITH K L J R, SHERMAN A D, HUFFARD C L, et al, 2014. Large Salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: day to week resolution[J]. Limnology and Oceanography, 59(3): 745-757.
doi: 10.4319/lo.2014.59.3.0745
|
[120] |
STENVERS V I, HAUSS H, OSBORN K J, et al, 2021. Distribution, associations and role in the biological carbon pump of Pyrosoma atlanticum (Tunicata, Thaliacea) off Cabo Verde, NE Atlantic[J]. Scientific reports, 11(1): 9231.
doi: 10.1038/s41598-021-88208-5
|
[121] |
STONE J P, 2016. Population dynamics of gelatinous zooplankton in the Chesapeake Bay and Sargasso Sea, and effects on carbon export[D]. Virginia: Virginia Institute of Marine Science.
|
[122] |
STONE J P, STEINBERG D K, 2016. Salp contributions to vertical carbon flux in the Sargasso Sea[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 113: 90-100.
|
[123] |
SUTHERLAND K R, MADIN L P, 2010a. Comparative jet wake structure and swimming performance of Salps[J]. Journal of Experimental Biology, 213(17): 2967-2975.
doi: 10.1242/jeb.041962
|
[124] |
SUTHERLAND K R, MADIN L P, STOCKER R, 2010b. Filtration of submicrometer particles by pelagic tunicates[J]. Proceedings of the National Academy of Sciences, 107(34): 15129-15134.
doi: 10.1073/pnas.1003599107
|
[125] |
SUTHERLAND K R, SORENSEN H L, BLONDHEIM O N, et al, 2018. Range expansion of tropical Pyrosomes in the northeast Pacific Ocean[J]. Ecology, 99(10): 2397-2399.
doi: 10.1002/ecy.2429
pmid: 30025165
|
[126] |
SUTHERLAND K R, THOMPSON A W, 2021. Pelagic tunicate grazing on marine microbes revealed by integrative approaches[J]. Limnology and Oceanography, 67(1): 102-121.
doi: 10.1002/lno.v67.1
|
[127] |
SWEETMAN A K, CHELSKY A, PITT K A, et al, 2016. Jellyfish decomposition at the seafloor rapidly alters biogeochemical cycling and carbon flow through benthic food-webs[J]. Limnology and Oceanography, 61(4): 1449-1461.
doi: 10.1002/lno.v61.4
|
[128] |
SWEETMAN A K, SMITH C R, DALE T, et al, 2014. Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs[J]. Proceedings of the Royal Society B: Biological Sciences, 281(1796): 20142210.
doi: 10.1098/rspb.2014.2210
|
[129] |
SYDEMAN W J, GARCÍA-REYES M, SCHOEMAN D S, et al, 2014. Climate change and wind intensification in coastal upwelling ecosystems[J]. Science, 345(6192): 77-80
doi: 10.1126/science.1251635
|
[130] |
TAKAHASHI K, ICHIKAWA T, FUKUGAMA C, et al, 2015. In situ observations of a doliolid bloom in a warm water filament using a video plankton recorder: Bloom development, fate, and effect on biogeochemical cycles and planktonic food webs[J]. Limnology and Oceanography, 60(5): 1763-1780.
doi: 10.1002/lno.v60.5
|
[131] |
TEBEAU C M, MADIN L P, 1994. Grazing rates for three life history stages of the doliolid Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea)[J]. Journal of plankton research, 16(8): 1075-1081.
doi: 10.1093/plankt/16.8.1075
|
[132] |
TEW K S, LO W T, 2005. Distribution of Thaliacea in SW Taiwan coastal water in 1997, with special reference to Doliolum denticulatum. Thalia democratica and T orientalis[J]. Marine Ecology Progress Series, 292: 181-193.
doi: 10.3354/meps292181
|
[133] |
THOMPSON A W, WARD A C, SWEENEY C P, et al, 2021. Host-specific symbioses and the microbial prey of a pelagic tunicate (Pyrosoma atlanticum)[J]. ISME Communications, 1(1): 1-10.
doi: 10.1038/s43705-021-00001-7
|
[134] |
TINTA T, KLUN K, HERNDL G J, 2021. The importance of jellyfish-microbe interactions for biogeochemical cycles in the ocean[J]. Limnology and Oceanography, 66(5): 2011-2032.
doi: 10.1002/lno.v66.5
|
[135] |
TINTA T, KOGOVšEK T, KLUN K, et al, 2019. Jellyfish-associated microbiome in the marine environment: exploring its biotechnological potential[J]. Marine Drugs, 17(2): 94.
doi: 10.3390/md17020094
|
[136] |
TROEDSSON C, FRISCHER M E, NEJSTGAARD J C, et al, 2007. Molecular quantification of differential ingestion and particle trapping rates by the Appendicularian Oikopleura dioica as a function of prey size and shape[J]. Limnology and Oceanography, 52(1): 416-427.
doi: 10.4319/lo.2007.52.1.0416
|
[137] |
TRUEBLOOD L A, 2019. Salp metabolism: temperature and oxygen partial pressure effect on the physiology of Salpa fusiformis from the California Current[J]. Journal of Plankton Research, 41(3): 281-291.
doi: 10.1093/plankt/fbz014
|
[138] |
TURNER J T, 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump[J]. Progress in Oceanography, 130: 205-248.
doi: 10.1016/j.pocean.2014.08.005
|
[139] |
URBAN J L, MCKENZIE C H, DEIBEl D, 1992. Seasonal differences in the content of Oikopleura vanhoeffeni and Calanus finmarchicus fecal pellets: Illustrations of zooplankton food web shifts in coastal Newfoundland waters[J]. Marine Ecology Progress Series, 84(3): 255-264.
doi: 10.3354/meps084255
|
[140] |
VARGAS C A, MADIN L P, 2004. Zooplankton feeding ecology: Clearance and ingestion rates of the salps Thalia democratica, Cyclosalpa affinis and Salpa cylindrica on naturally occurring particles in the Mid-Atlantic Bight[J]. Journal of plankton research, 26(7): 827-833.
doi: 10.1093/plankt/fbh068
|
[141] |
WALTERS T L, GIBSON D M, FRISCHER M E, 2019b. Cultivation of the marine pelagic tunicate Dolioletta gegenbauri (Uljanin 1884) for experimental studies[J]. Journal of Visualized Experiments, 150: e59832.
|
[142] |
WALTERS T L, LAMBOLEY L M, LÓPEZ-FIGUEROA N B, et al, 2019a. Diet and trophic interactions of a circumglobally significant gelatinous marine zooplankter, Dolioletta gegenbauri (Uljanin, 1884)[J]. Molecular ecology, 28(2): 176-189.
doi: 10.1111/mec.2019.28.issue-2
|
[143] |
WANG SHIWEI, WAN AIYONG, ZHANG GUANGTAO, et al, 2022. Northward expansion of a warm-water doliolid Dolioletta gegenbauri (Uljanin, 1884) into a temperate bay, China[J]. Water, 14(11): 1685.
doi: 10.3390/w14111685
|
[144] |
WIEBE P H, MADIN L P, HAURY L R, et al, 1979. Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea[J]. Marine Biology, 53(3): 249-255.
doi: 10.1007/BF00952433
|
[145] |
WINDER M, BOUQUET J M, BERMUDEZ R, et al, 2017. Increased Appendicularian zooplankton alter carbon cycling under warmer more acidified ocean conditions[J]. Limnology and Oceanography, 62(4): 1541-1551.
doi: 10.1002/lno.v62.4
|
[146] |
WRIGHT R M, QUÉRÉ C L, BUITENHUIS E, et al, 2021. Role of jellyfish in the plankton ecosystem revealed using a global ocean biogeochemical model[J]. Biogeosciences, 18(4): 1291-1320.
doi: 10.5194/bg-18-1291-2021
|